

Syllabus

Bachelor in Medical Radiologic & Imaging Technology

First Semester (0-6 months)

Subject Code	Course Titles	Hours Per week						
		L	т	P	Internal	External	Total	CF
BMRIT-101	General Anatomy-I	3	-1	-	40	60	100	4
BMRIT-102	General Physiology-I	3	1		40	60	100	4
BMRIT-103	Basic in Computer & Information Science	4	1		40	60	100	5
BMRIT-104	Introduction to Quality And patient Safety	4	1	-	40	60	100	5
BMRIT-105	Applied Physics	4	1		40	60	100	5
BMRIT-106	Image Acquisition, Processing & Achieving	4	1		40	60	100	5
BMRJT-111	General Anatomy-I	*		2	40	60	100	1
BMRIT-112	General Physiology-I	12	-	2	40	60	100	1
BMRIT-113	Basic in Computer & Information Science	•	*	2	40	60	100	1
BMRIT-114	Applied Physics		-	2	40	60	100	1
	Total	22	6	8	400	600	1000	32
	Total Hours in Semester		550			2,755		32

NOTE:

Abbreviations: L - Lecture, T - Tutorials and P - Practical

Considering four months per semester as working months, total contact hours per semester shall be 550 (Five hundred and Fifty)

quest

(P)

Parka

Mishka

J. upouls 77

Bachelor in Medical Radiologic & Imaging Technology

Course Title:- GEN	ERAL ANATOMY-I		
Semester: I	Course Code: BMRIT 101	Credits- 05	Core
No. Of Sessions Le	cture/ Tutorial : 30	No. Of Practical Ho	ours: 40
Course Pre-Requisit	es:	Numbers Of Sessi	on: 70

Course Introduction:

Allied and healthcare professionals (AHPs) includes individuals involved with the delivery of health or healthcare related services, with qualification and competence in therapeutic, diagnostic, curative, preventive and/or rehabilitative interventions.

They work in multidisciplinary health teams in varied healthcare settings including doctors, nurses and public health officials to promote, protect, treat and manage a person's physical, mental, social, emotional, environmental health and holistic well-being. The study of anatomy helps them in putting into perspective the knowledge that they gain for better good of humanity.

Course Objectives:

This course is designed to provide the students the basic knowledge in anatomy. At the end of the course, the student should be able to:

- Anatomy of various structures in the human body.
- Identify the microscopic structures of various tissues, and organs in the human body &correlate the structure with the functions. Comprehend the normal disposition, inter-relationships, gross, functional and applied.
- Comprehend the basic structure and connections between the various parts of the central nervous system so as to analyses the integrative and regulative functions on the organs and systems.

Course Learning Outcomes:

Upon successful completion of the course, the students should be able to:

CLO1: Understand the various organ structures with a backdrop of general anatomy (Remember & Understand)

CLO2: Compare the differences between the similar structures in the body and their relevance (Analyze)

CLO3: Learn to apply the knowledge of various structures to clinical aspect of diseases (Apply &Analyze)

CLO4: Augment their learning by making models, charts and learning on simulators (Synthesize, evaluate & create)

quiet

(m)-

Pankar

Muhlon

J. Wester 1

Course Pedagogy:

The course pedagogy includes a comprehensive study including the study of general structures and the specialized organs in a manner aimed at being student friendly. Various clinical aspects are discussed in relevance to the topic taught so as to relieve the monotony of the subject Regular doubt clearing sessions, written assignments, quiz, chart and poster making and model making are some of the measures for learning. Periodic and surprise tests are taken to apprise and evaluate the students. They are taught on simulators for a live feeling. The practical includes the study of structures through mannequins which helps in holding the interest of the students.

Course Contents:

Module 1

- Introduction to Anatomical terms of the human body Basic anatomical terminology, anatomical position, anatomical planes, levels of organization in the body, organ systems, skeleton, cavities of the body.
- Organization of the human body at the cellular level Structure of the cell comprising of cell membrane, cytoplasm, cell organelles, nucleus, cell extensions etc.
- Organization of the human body at the tissue level Epithelial, Connective, Muscular& Nervous tissue.

Module 2

- 1. Blood Composition of blood, Features of red blood cells, white blood cells, platelets.
- Lymphatic system Features of lymph vessels, lymphatic tissue & organs, lymphatics, spleen, tonsil, thymus.
- Nervous system Central nervous system, brain, cerebellum, spinal cord, cranial nerves, autonomic nervous system.
- 4. Muscular system Skeletal muscle, cardiac muscle, smooth muscle, muscles of the body.
- 5. Skeletal system Features of bones, axial skeleton, appendicular skeleton,
- Musculoskeletal system Joints of upper & lower limb.

Module 3

- Respiratory system Nose & paranasal sinuses, pharynx, larynx, trachea, lungs.
- 2. Cardiovascular system Heart & blood vessels.
- Digestive system oral cavity, Pharynx, Salivary gland, esophagus, stomach, Small Intestine, Large intestine, Liver, Gall bladder, pancreases.
- 4. Urinary system- Kidneys, Juxtaglomerular apparatus, Ureters, urinary bladder, Urethra.

Module 4

- Introduction to genetics Features of chromosomes, DNA.
- 2. Reproductive system in females External & internal genital organs, breast,

3. Reproductive system in males - Penis, scrotum, testes, prostate gland.

zunis (

PODKET

Michlea

breast.

- Endocrine system Hormones, pituitary gland, thyroid gland, parathyroid glands, adrenal glands, endocrine pancreas.
- 5. Special senses Olfactory system, taste apparatus, external middle & internal ear, eye.
- 6. Skin Features of skin, hair, sebaceous glands, sweat glands, nails.

The classes will be two theories and two practical including the tutorials in a week.

Course Assessment Scheme:

Students would be assessed continuously throughout the semester in the form of continuous evaluation. Periodic tests and surprise tests will be conducted. Students will have to submit written assignments, make charts and posters, make models, and conduct quiz for the topics. Practical will be conducted with viva. Midterm and end term evaluation will be done theoretically and practically. Students will also be assessed on the basis of presentations of various topics.

- P.R Ashalatha & G Deepa 's Textbook of anatomy & physiology by B.D. Chaurasia's human anatomy Reference books:
- 2. Sampath Madhyastha's Manipal manual of anatomy for allied health sciences
- 3. Krishna Garg & Madhu Joshi's Practical anatomy workbook
- 4. Dixit's Atlas of Histology for Medical Students
- 5. Basic Histology: A Color Atlas & Text
- 6. Jana's Exam Oriented Practical Anatomy
- 7. Krishna's Anatomy Mnemonics

Online references:

Courser a subscription for online anatomy topics

sunt m fankor

Mishka

N. Wood May

			1
Semester: I	Course Code: BMRIT 102	Credits- 05	Core
No. Of Sessions	Lecture/ Tutorial : 30	No. Of Practical Hour	s: 40
Course Pre-Req	uisites:	Numbers Of Session:	70

Course Introduction:

As the Indian government aims for Universal Health Coverage, the lack of skilled human resource may prove to be the biggest impediment in its path to achieve targeted goals. The benefits of having AHPs in the healthcare system are still unexplored in India. An enormous amount of evidence suggests that the benefits of AHPs range from improving access to healthcare services to significant reduction in the cost of care. The teaching of physiology aims to integrate their learning in sync with the understanding of the basic functions of the various organs in the body and their clinical aspect so that the knowledge gained can give them an edge in their field.

Course Objectives:

This course is designed to provide the students the basic knowledge in physiology. At the end of the course, the student should be able to:

- 1. Explain the normal functioning of venous organ systems of the body and their interactions.
- 2. Elucidate the physiological aspects of normal growth and development.
- 3. Describe the physiological response and adaptations to environmental stresses.
- Know the physiological principles underlying pathogenesis of disease.

Course Learning Outcomes:

Upon successful completion of the course, the students should be able to:

- CLOI: Understand the various organ functions with a backdrop of general physiology (Remember & Understand)
- CL02; Compare the differences between the similar functions in the body and their relevance (Analyze)
- CL03: Learn to apply the knowledge of various physiological process to clinical aspect of diseases (Apply & Analyze)
- CL04: Augment their learning by making models, charts and learning on simulators (Synthesize, evaluate & create)

Course Pedagogy:

The course pedagogy includes a comprehensive study including the study of general structures and the specialized organs in a manner aimed at being student friendly. Various clinical aspects are discussed in relevance to the topic taught so as to relieve the monotony of the subject. Regular doubt cleaning sessions,

T.S. MISHRA UNIVERSITY, AMAUSI LUCKNOW

written assignments, quiz, chart and poster making and model making are some of the measures for learning. Periodic and surprise tests are taken to apprise and evaluate the students. They are taught on simulators for a live feeling. The practical includes the study of structures through mannequins which helps in holding the interest of the students.

Course Contents and Duration:

Course contents and duration: The classes will be two theories and two practical including the tutorials in a week.

Course contents:

Module 1

- 1. Introduction to physiology of the human body -Composition of body, Homeostasis, Introduction to chemistry of life.
- 2. Organization of the human body at the cellular level Function of lipids, carbohydrates, proteins & cell organelles.
- 3. Organization of the human body at the tissue level Function of Epithelial, Connective, Muscular & Nervous tissues.

Module 2

- Blood Haemopoesis, hemostasis, coagulation of blood, blood transfusion.
- 2. Lymphatic system Function of lymph vessels, lymphatic tissue & organs, lymphatic's, spleen, tonsil, thymus.
- 3. Resistance & immunity Innate immunity, acquired immunity, humoral & cell mediated immunity.

Module 3

- Nervous system Properties of nerve fibers, function of neuroglia, synapse, CNS, CSF, brain, cranial nerves, demonstration of reflexes.
- 2. Muscular system Properties of skeletal muscle, cardiac muscle, smooth muscle, muscles of the
- 3. Skeletal system Functions of bones, axial skeleton, appendicular skeleton.
- Musculoskeletal system Movement in the joints of upper & lower limb. Module 4
- 5. Respiratory system Physiology of respiration, pulmonary function tests, gas exchange in lungs, transport of gases between lungs & tissues, regulation of respiration.
- 6. Cardiovascular system Heart & blood vessels: Systemic circulation, pulmonary circulation, ECG, cardiac output, blood pressure.
- 7. Digestive system- Process of digestion, function of oral cavity, pharynx, salivary glands, esophagus, stomach, small intestine, large intestine, liver, gallbladder, pancreas.
- 8. Urinary system- Function of kidneys, juxtaglomerular apparatus, ureters, urinary bladder, urethra, physiology of urine formation, glomerular filtration, tubular reabsorption, water balance, [white]

- Introduction to genetics Features of chromosomes, DNA, protein synthesis, dominant inheritance, recessive inheritance, and sex linked inheritance.
- 10. Reproductive system- female: Physiology of female reproductive system.
- 11. Reproductive system male- Physiology of male reproductive system.
- Endocrine system- Mechanism of action of hormones, function of pituitary gland, Thyroid gland, parathyroid glands, adrenal glands, endocrine pancreas Special senses - Physiology of olfaction, taste, hearing, balance & vision.
- 13. Skin-Function of skin, hair, sebaceous glands, sweat glands, nails, temperature regulation.

Practical: demonstration/observation

Blood test:

- 1. Microscope
- 2. Haemocytometer
- 3. Blood
- 4. RBC count
- 5. Hb
- 6. WBC count
- 7. Differential Count
- 8. Hematocrit demonstration
- 9. ESR
- 10. Blood group & Rh. Type
- 11. Bleeding time and clotting time.

Digestion

Test salivary digestions

Excretion

- 1. Examination of Urine
- 2. Specific gravity
- 3. Albumin
- 4. Sugar
- 5. Microscopic examination for cells and cysts

Respiratory system

- 1. Clinical examination of respiratory system
- 2. Spirometry
- 3. Breath holding test

Cardio Vascular System:

- 1. Measurement of blood pressure and pulse rate
- 2. Effect of exercise on blood pressure and pulse rate

Sunt

(m)

Panka

Michka

7. W. J.

Semester: 1	Course Code: BMRIT	Credits- 05	Core
No. Of Sessions	Lecture/ Tutorial : 30	No. Of Practical Hou	rs: 40
Course Pre-Requ	and the first of the state of t	Numbers Of Session:	

Course Introduction:

As the Indian government aims for Universal Health Coverage, the lack of skilled human resource may prove to be the biggest impediment in its path to achieve targeted goals. The benefits of having Al-IPs in the healthcare system are still unexplored in India. An enormous amount of evidence suggests that the benefits of Al-IPs range from improving access to healthcare services to significant reduction in the cost of care. The teaching of computer and information science aims to integrate their learning in sync with the understanding of the basic functions of the various setups of the computers and its software; this knowledge will help them gained confidence and give them an edge in their field.

Course Objectives:

- The course has focus on computer organization, computer operating system and software, and MS windows, Word processing, Excel data worksheet and PowerPoint presentation.
- The students will be able to appreciate the role of computer technology and some extent able to gain hand-on experience in using computers.

Course Learning Outcomes:

Upon successful completion of the course, the students should be able to:

CLOI: Understand the various hardware and software of the computer system,

CL02: Compare the differences between the various ftlnctions of the same (Analyze)

CL03: Learn to apply the knowledge of various fields of the course (Apply & Analyze)

CL04: Augment their learning by making various presentations and graphics (Synthesize, evaluate

Course Pedagogy

The course pedagogy includes a comprehensive study including the various software and hardware of the computer system in order to make the students more competent and skilled in its use and storage. Various aspects about the use for same in health care setups are discussed in relevance to the topic taught so as to relieve the monotony of the subject. Regular doubt clearing sessions, written assignments, quiz, presentations are some of the measures for learning. Periodic and surprise tests are taken to apprise and evaluate the students. Mulh

Module 1

- Introduction to computer: Introduction, characteristics of computer, block diagram of computer, generations of computer, computer languages.
- Input output devices: Input devices (keyboard, point and draw devices, data scanning devices, digitizer, electronic card reader, voice recognition devices, vision-input devices), output devices (monitors, pointers, plotters, screen image projector, voice response systems).
- 3. Processor and memory: The Central Processing Unit (CPU), main memory.
- Storage Devices: Sequential and direct access devices, magnetic tape, magnetic disk, optical disk, mass storage devices.

Module 2

- Introduction of windows: History, features, desktop, taskbar, icons on the desktop, operation with folder, creating shortcuts, operation with windows (opening, closing, moving, resizing, minimizing and maximizing, etc.).
- Introduction to MS-Word: introduction, components of a word window, creating, opening and inserting files, editing a document file, page setting and formatting the text, saving the document, spell checking, printing the document file, creating and editing of table, mail merge.
- Introduction to Excel: introduction, about worksheet, entering information, saving workbooks and formatting, printing the worksheet, creating graphs.

Module 3

- Introduction to power-point: introduction, creating and manipulating presentation, views, formatting and enhancing text, slide with graphs.
- Introduction of Operating System: introduction, operating system concepts, types of operating system.
- Computer networks: introduction, types of network (LAN, MAN, WAN, Internet, Intranet), network topologies (star, ring, bus, mesh, tree, hybrid), components of network.
- Internet and its Applications: definition, brief history, basic services (E-Mail, File Transfer Protocol, telnet, the World Wide Web (WWW)), www browsers, use of the internet.

Application of Computers in clinical settings

@

Panko

Mishka

J. whoderon

Semester: I	Course Code: 104	BMRIT	Credits- 03	Core	
No. Of Sessions	Lecture/ Tutorial: 30		No. Of Pract	ical Hours: 00	
Course Pre-Requ	isites:		Numbers Of	Session: 30	

Course Introduction

As antibiotic resistant strains of bacteria are growing rapidly, making it difficult to cure such patients, the importance of sterilization and proper disposals is only way to prevent it. Well known sayings, prevention is better than cure, the main objective of this course is to focus mainly on the preventive measures and quality assurance to the patients. This course emphasizes more on risk management principles and safe handling of disposals, basic emergency care and basic life support skills which can prove remedy in emergency cases.

Course Objectives:

The main objective of this course is to teach students quality measures to provide patients with effective methods of treatment with more focus on proper handling of infected specimens and proper treatment with best sterilized and disinfected means to reduce the cross-infection scenario and nosocomial infections, which occurs due to poor handling of infected specimens and improper disposal means polluting environment too. Students are made to learn basic concepts of quality in health care and develop skills to implement sustainable quality assurance program. Introducing students to basic emergency care, infection prevention& control with knowledge of biomedical waste management and antibiotic resistance.

Course Learning Outcomes

Upon successful completion of the course, the students should be able to:

- CLOI: Understood quality improvement approaches, NABH, NABL, JCI guidelines which purely focuses on the quality measures and proper handling of disposals providing quality facility to patients. (Understanding Based)
- CL02: Understood basic life support skills which can save many lives in urgent cases. (Applying Based)
- CL03: Understood proper disposals of biomedical waste, reducing risk of infection to waste handling personnel and cross infection which can occur due to improper handling of infected waste polluting surroundings too. (Applying Based)
- CL04: Understood effective hand hygiene, prevention and control of common health care associated infections. (Remembering Based)
- CL05: Understood fundamentals of emergency management, disaster preparedness. (Remembering based)

Mar

Panko J N

Mishka

J. My Jusy

Course Pedagogy:

This course will use mixed technique of interactive lectures, digital learning methodologies, regular assignments and power point presentations. Students will be made to prepare project reports by interacting directly with laboratory personnel and visits to hospital to engage the students in strengthening their conceptual foundation and applying the knowledge gained to different day to day real world applications. This course will focus mainly on applying based methodologies, students will not be made limited to theory only, but hands on practices and analyzing every aspect of the module

Course Contents

Module 1. Quality assurance and Management

Introduction, Quality improvement approaches, standards and norms, quality improvement tools, introduction to NABH guidelines.

Module 2. Basic of Emergency care and Life support skills

Basic life support (BLS) following cardiac arrest, recognition of sudden cardiac arrest and activation of emergency response system, early cardiopulmonary resuscitation (CPR) and rapid defibrillation with an automated external defibrillator (AED)

Module 3. Basic emergency care

First aid, choking, rescue breathing methods, ventilation including use of bag valve master (BVMs)

Module 4. Biomedical Waste Management

Definition, waste minimization, BMW-segregation, collection, transportation, treatment and disposal (Including color coding), Liquid BMW, Radioactive waste, metals/chemicals/drug waste, BMW management and methods of disinfection, use of Personal protective equipment (PPE)

Module 5. Infection Prevention and Control

Sterilization, Disinfection, Effective hand hygiene, use of PPE, Prevention and control of common health care associated infections, Guidelines (NABH) and JCI for hospital infection control.

Module 6. Disaster preparedness and management, fundamentals of emergency management

PRACTICALS (DEMONSTRATION ONLY)

- Vital signs and primary assessment
- 2. Basic emergency care- first aid

Course References

Texts, Materials, and Supplies:

when J. Wallha

T.S. MISHRA UNIVERSITY, AMAUSI LUCKNOW

 Turgeon, Mary Louise. (2015). Clinical Laboratory Science, 7th ed. Maryland Heights, MO: Mosby. ISBN 9780323225458

Required Readings:

 Turgeon, Mary Louise. (2015). Clinical Laboratory Science, 7th ed. Maryland Heights, MO: Mosby. ISBN 9780323225458

Recommended Readings:

· Medical Dictionary

Others

- disaster management set up in India opcw.org <u>www.opcw.org/sites/default/files/documents</u> (event photos/2010/tabletop exercise Poland nov201.
- Natural disasters: hospital management | 2015-10-22 | ahc... www.reliasmedia.com/articles/136571-natural-disasters-hospital-management.
- Biomedical waste management in India: Critical appraisal NCBI NIH www.ncbi.nlm.nih.gov/pmc/afticles/PMC5784295.
- Vital signs: Understanding what the body is telling us https://www.coursera.org/learn/vital-signs/.
 Patient Safety and Quality Improvement https://www.coursera.org/learn/patient-safety.

gurit

(m) Pankar)

Mishka

J. Wrodker 1

Course Title:- /	Applied Physics			
Semester: 1	Course Code: BMRIT 105	Credits- 06	Core	
No. Of Session	s Lecture/ Tutorial : 30	No. Of Pract	ical Hours: 60	
Course Pre-Rec	quisites:	Numbers Of	Session: 90	

Course Introduction

Applied physics is a science and bridge between physics and engineering. It is applied for particular technological or practical use. The course covers the study of the application of the theories and principles of science to practical purposes.

Course Objectives:

The purpose of this course is to provide an understanding of physical concepts and underlying various technological applications. This course also provides fundamental idea about circuit analysis, working principles of machines. In addition, the course is expected to develop scientific temperament and analytical skill in students, to enable them logically tackle complex engineering problems in their chosen area of application. The main objectives are:

Course Learning Outcomes

- 1. To understand the general scientific concepts required for technology
- 2. Understand the basic concepts of magnetic circuits, AC & DC circuits.
- 3. To gain knowledge about fundamentals of electronic components and devices.

Upon successful completion of the course, the students should be able to (knowledge based):

- CLOI: Understood the basic concepts, fundamental principles, and the scientific theories related to various scientific phenomena and their relevancies in the day-to-day life.
- CL02: Acquired the skills in handling scientific instruments, planning and performing in laboratory experiments.
- CL03: Realized how developments in any science subject helps in the development of other science subjects and vice-versa and how interdisciplinary approach helps in providing better solutions and new ideas for the sustainable developments.

Course Pedagogy:

The course will use the mixed technique of interactive lectures, regular assignments and practicing numerical. Teaching in this course is aimed to engage the students in strengthening their conceptual foundation and applying the knowledge gained to different day-to-day real world applications. It will not only help students to understand the fundamentals of applied physics but also improve skills and techniques for tackling practical problems.

gunt

(P)

Panka

Mishka

What wall

Course contents:

Module-I

BASIC PHYSICS: Sound -The nature and propagation of sound wave (the characteristics of sound, wave theory), speed of sound in a material medium, intensity of sound, the decibel, Interference of sound waves, beats, diffraction, Doppler's effect

HEAT: Definition of heat, temperature, Heat capacity, specific heat capacity, Heat transfer conduction, convection, radiation, thermal conductivity, equation for thermal conductivity (k), the value of k of various material of interest in radiology, thermal expansion.

Module-2

FUNDAMENTALS OF DC CIRCUITS: Introduction to DC and AC circuits, Active and passive two terminal elements, Ohms law, resistivity, series and parallel combination, Voltage Current relations for resistor, inductor, capacitor, Kirchhoff's laws, EMF.

AC CIRCUITS: A.C. and D.C. power supply with examples, single phase and poly phase power supply, Sinusoids, Introduction to three phase systems - types of connections, relationship between line and phase values.

Module-3

MAGNETIC CIRCUITS: Introduction to magnetic Circuits-Simple Magnetic Circuits-Faraday's laws, induced emfs and inductances, Galvanometer. Magnets and magnetic field, force on an electric current in a magnetic field, force on electric charge moving in a magnetic field, magnetic field due to straight wire; force between two parallel wires, Ampere's law, electromagnet and solenoids

Module-4

RECTFICATION: Wave form of half wave and full wave current/voltage wave form; Rectifiers: Introduction, energy bands in solids, the semiconductor, p-type and n-type semiconductors, p-n junction, p-n junction diode, p-n junction diode as rectifier (half- wave and full-wave rectifier), rectifiers relative merits and demerits; silicon, germanium diodes.

Junt

@

Pankar

Midska

J. Wahan

Course Title:- I	mage Acquisition, Processing &	& Achieving		
Semester: I	Course Code: BMRIT	Credits- 04	Core	
No. Of Sessions	s Lecture/ Tutorial : 40	No. Of Practi	ical Hours: 00	
Course Pre-Req	uisites:	Numbers Of	Session: 40	

Course Objective

- Demonstrate composition of film, screens, cassette, processing solution, the usage and effect of light.
- 2. Perform best storage guidelines for film storage and handling.
- 3. Select cassette size, Demonstrate loading & unloading of films.

Course Learning Outcomes

Upon successful completion of the course, the students should be able to (knowledge based):

- CLO1: Understood the basic concepts, fundamental principles, and the scientific theories related to films, screens.
- CLO2: Acquired the skills in handling films screens and planning of dark-room and performing in laboratory experiments.
- CLO3: Realized how developments in any radio-graphic image quality. How interdisciplinary approach helps in providing better solutions and new ideas for the sustainable developments.

Course contents:

MODULE-1

Composition of single and double coated radiographic films, Screen & Non Screen films, structure of film, characteristic curve, characteristics (speed, base+ fog. gamma, latitude), effect of grain size on film response to exposure, interpretation of characteristics curve, latent image formation, process of film developing (composition of developer, Fixer and other processing solution), common errors and faults while processing (densitometry), automatic processing unit (processing cycle), developer & Fixer replenishment and silver recovery.

MODULE-2

Film storage rules and guidelines, film handling and care (size, construction and function), types of intensifying screens and relative advantage, loading and unloading of cassettes and their care/maintenance, effects of kV and mA on variation of emitted radiation intensity, determination of relative speeds, film contrast, film screen contact.

untel (m)

TOTAL TIPE

Ranker

Menka

MODULE-3

Image formation, latent image, processing: manual processing, automatic processing. Developer, fixer, rinser components, replenished. Manual technique of developing film, Automatic film processor, common errors in processing.

MODULE-4.

Meaning of radiographic image contrast, density resolution, sharpness, magnification and distortion of image, noise and blur, radiographic illuminators and viewing conditions, visual acuity and resolution, quality assurance of the related equipment and its benefits with respect to visual assessment

MODULE-5

Introduction, purpose and location of dark room, layout of dark room, entrance, pass box, hatch, hangers, safe light, criteria of safe light, safe light test.

Course Pedagogy:

The course will use the mixed technique of interactive lectures, regular assignments. Teaching in this course is aimed to engage the students in strengthening their conceptual foundation and applying the knowledge gained. It will not only help students to understand the fundamentals of Imaging and Quality of Radiographs but also improve skills and techniques for tackling practical problems.

Reference books:

Text book of radiology for residents and technician- SK Bhargava.

Dark room procedure- MO and Chesney

Junil

Soukas

Mishka

J. Worehal

Semester: 1	Course Code: BMRIT 107	Credits- 03	Core
No. Of Sessions Lectu	re/ Tutorial : 30	No. Of Practic	al Hours: 00

Course Introduction:

As the Indian government aims for Universal Health Coverage, the lack of skilled human resource may prove to be the biggest impediment in its path to achieve targeted goals. The benefits of having AHPs in the healthcare system are still unexplored in India. An enormous amount of evidence suggests that the benefits of AHPs range from improving access to healthcare services to significant reduction in the cost of care. The teaching of English and communication skills aims to integrate their learning in sync with the understanding of the basics of spoken English and communication techniques.

Course Objectives:

- This course trains the students in oral presentations, expository writing, logical organization and structural support.
- By acquiring skills in the use of communication techniques the students will be able to express better, grow personally and professionally, develop poise and confidence and achieve success.

Course Learning Outcomes

Upon successful completion of the course, the students should be able to:

CL01: Understood the role of radiographer in personal and professional ethics.

CL02: Understood the handling of patient with good language.

CL03: Understood the importance of good communication with patient as a health care professional.

Course Pedagogy

Module 1: Basics of Grammar-Part I

Vocabulary, Synonyms, Antonyms, Prefix and Suffix, Homonyms, Analogies and Portmanteau words.

Module 2: Basics of Grammar — Part II

Active, Passive, Direct and Indirect speech, Prepositions, Conjunctions and Euphemisms

Module 3: Writing Skills

Letter writing, E mail, and Essay, Articles, and Memos, one word substitutes, note making and Comprehension

Module 4: Writing and Reading

Summary writing, Creative writing, newspaper reading

Mishka

J. whoden 2

Module 5: Practical Exercise

Formal speech, Phonetics, semantics and pronunciation

Communication:

Module 6: Introduction: Communication process, Elements of communication, Barriers of communication and how to overcome them, Nuances for communicating with patients and their attenders in hospitals.

Module Speaking: Importance of speaking efficiently; Voice culture, Preparation of speech. Secrets of good delivery, Audience psychology, handling, Presentation skills, Individual feedback for each student, Conference/interview technique.

Module 8; Listening: Importance of listening, Self-assessment, Action plan execution, Barriers in listening, Good and persuasive listening.

Module 9: Reading: What is efficient and fast reading, Awareness of existing reading habits, tested techniques for improving speed, Improving concentration and comprehension through systematic study.

Module 10: Non Verbal Communication: Basics of non-verbal communication, Rapport building skill using neuro-linguistic programming (NLP).

gune

0

Pankar

Mishka

J. Wrahmay

Second Semester (7-12 months)

Subject Code	Course Titles		lours r wee		Marks			
	Course Titles	L	т	P	Internal	External	Total	CR
BMRIT -201	General anatomy-II	3	1	-	40	60	100	4
BMRIT -202	General Physiology-II	3	1	-	40	60	100	4
BMRIT -203	Basic physics including Radiological physics	3	1		40	60	100	4
BMRIT -204	Conventional radiography and equipment	3	1		40	60	100	4
BMRIT -205	Medical ethics and legal aspects	3	1		40	60	100	2
BMRIT -206	Environmental Science	3	1		40	60	100	2
BMRIT -207	General anatomy-II	-	•	2	40	60	100	1
BMRIT -208	General Physiology-II	-	•	2	40	60	100	1
BMRIT -209	Basic physics including Radiological physics	-		4	40	60	100	2
BMRIT -210	Conventional radiography and equipment			4	40	60	100	2
	Total	18	6	8	400	600	1000	26
	Total Hours in Semester	- 3	550					

OTE:

bbreviations: L - Lecture, T - Tutorials and P - Practical

onsidering four months per semester as working months, total contact hours per semester shall be 550 (ive hundred and Fifty)

Junet

m) Ponka

Mirhka

N. Would

Course Title:- Gen	eral Anatomy-II			
Semester: 1	Course Code: BMRIT 201	Credits- 03	Core	
No. Of Sessions L	ecture/ Tutorial : 20	No. Of Pract	ical Hours: 20	
Course Pre-Requis	ites:	Numbers Of Session: 40		

Course Introduction

Allied and healthcare professionals (AHPs) includes individuals involved with the delivery of health or healthcare related services, with qualification and competence in therapeutic, diagnostic, curative, preventive and/or rehabilitative interventions.

They work in multidisciplinary health teams in varied healthcare settings including doctors, nurses and public health officials to promote, protect, treat and manage a person's physical, mental, social, emotional, environmental health and holistic well-being. The study of anatomy helps them in putting into perspective the knowledge that they gain for better good of humanity.

Course learning Outcomes-

- CLO-1 Enumerate the function of brain, Nervous system, motor system, blood supply of brain, anatomy of brain, cranial nerves, CSF formation and about spinal cord.
- CLO-2 Enumerate auditory system. Demonstrate anatomy of urinary system, location of kidney.
- CLO-3 Enumerate blood vessels of reproductive system. Enumerate hormone secretion of glands and blood supply.

Course Pedagogy

The course pedagogy incudes a comprehensive study including the study of general structures and the specialized organs in a manner aimed at being student friendly. Various clinical aspects are discussed in relevance to the topic taught so as to relieve the monotony of the subject. Regular doubt clearing sessions, written assignments, quiz, chart and poster making and model making are some of the measures for learning. Periodic and surprise tests are taken to apprise and evaluate the students. They are taught on simulators for a live feeling. The practical includes the study of structures through mannequins which helps in holding the interest of the students.

Course contents

MODULE -1 Classification of nervous system

Nerve - Classification, Microscopy with example, Neurons classification with examples, Simple reflex arc

Parts of a typical spinal nerve/Dermatome: Central nervous system - disposition, parts and functions Cerebrum, Cerebellum, Midbrain & brain stem Blood supply & anatomy of brain.

Spinal cord-anatomy, blood supply, nerve pathways Pyramidal, extra pyramidal system, Thalamus, hypothalamus, Structure and features of meninges Ventricles of brain, CSF circulation Development of nervous system & defects. J. Want 10

Course Title:- Ger	neral Anatomy-II			
Semester: I	Course Code: BMRIT 201	Credits- 03	Core	
No. Of Sessions L.	ecture/ Tutorial : 20	No. Of Prac	tical Hours: 20	
Course Pre-Requis	sites:	Numbers O	f Session: 40	

Course Introduction

Allied and healthcare professionals (AHPs) includes individuals involved with the delivery of health or healthcare related services, with qualification and competence in therapeutic, diagnostic, curative, preventive and/or rehabilitative interventions.

They work in multidisciplinary health teams in varied healthcare settings including doctors, nurses and public health officials to promote, protect, treat and manage a person's physical, mental, social, emotional, environmental health and holistic well-being. The study of anatomy helps them in putting into perspective the knowledge that they gain for better good of humanity.

Course learning Outcomes-

- CLO-1 Enumerate the function of brain, Nervous system, motor system, blood supply of brain, anatomy of brain, cranial nerves, CSF formation and about spinal cord.
- CLO-2 Enumerate auditory system. Demonstrate anatomy of urinary system, location of kidney.
- CLO-3 Enumerate blood vessels of reproductive system. Enumerate hormone secretion of glands and blood supply.

Course Pedagogy

The course pedagogy incudes a comprehensive study including the study of general structures and the specialized organs in a manner aimed at being student friendly. Various clinical aspects are discussed in relevance to the topic taught so as to relieve the monotony of the subject. Regular doubt clearing sessions, written assignments, quiz, chart and poster making and model making are some of the measures for learning. Periodic and surprise tests are taken to apprise and evaluate the students. They are taught on simulators for a live feeling. The practical includes the study of structures through mannequins which helps in holding the interest of the students.

Course contents

MODULE -1 Classification of nervous system

Nerve - Classification, Microscopy with example, Neurons classification with examples, Simple reflex are

Parts of a typical spinal nerve/Dermatome: Central nervous system — disposition, parts and functions Cerebrum, Cerebellum, Midbrain & brain stem Blood supply & anatomy of brain,

Spinal cord-anatomy, blood supply, nerve pathways Pyramidal, extra pyramidal system, Thalamus, hypothalamus, Structure and features of meninges Ventricles of brain, CSF circulation Development of nervous system & defects

nervous system & defects.

T.S. MISHRA UNIVERSITY, AMAUSI LUCKNOW

MODULE-2 Cranial nerves — (course, distribution, functions and palsy) Sympathetic nervous system. its parts and components Parasympathetic nervous system Applied anatomy

MODULE-3 Structure and function of Visual system, auditory system, gustatory system, olfactory system, Somatic sensory system. Pelvic floor, innervations Kidney, Ureter, bladder, urethra. Reproductive system of male, Reproductive system of female

ANATOMY PRACTICAL

- 1) Identification and description of all anatomical structures.
- 2) Demonstration of dissected parts
- 3) Demonstration of skeleton-articulated and disarticulated.
- Surface anatomy: Surface land mark-bony, muscular and ligamentous. Surface anatomy of major nerves, arteries of the limbs.

Course Reference text books

PR Ashalatha& G Deepa Textbook of ANATOMY & PHYSIOLOGY by B.D.Chaurasia's HUMAN ANATOMY

Reference books:

- Sampath Madhyastha's Manipal manual of anatomy for allied health sciences
- · Krishna Garg &Madhu Joshi's Practical anatomy workbook
- · Dixit's Atlas of Histology for Medical Students
- Basic Histology: A Color Atlas & Text
- Jana's Exam Oriented Practical Anatomy
- Krishan's Anatomy Mnemonics

Online references:

Coursera subscription for physiology topics

& gunit

@

Ronxa Mechka

C. Whoolky)

Course Title: G	ENERAL PHYSIOLOGY-II			
Semester: I	Course Code: BMRIT 202	Credits- 03	Core	
No. Of Sessions	Lecture/ Totorial : 20	No. Of Pract	ical Hours: 20	
Course Pre-Requ	risites:	Numbers Of	Session: 40	

Course Introduction

As the Indian government aims for Universal Health Coverage, the lack of skilled human resource may prove to be the biggest impediment in its path to achieve targeted goals. The benefits of having Al-IPs in the healthcare system are still unexplored in India. An enormous amount of evidence suggests that the benefits of AHPs range from improving access to healthcare services to significant reduction in the cost of care. The teaching of physiology aims to integrate their learning in sync with the understanding of the basic functions of the various organs in the body and their clinical aspect so that the knowledge gained can give them an edge in their field,

Course learning Outcomes.

- CLO-I Enumerate Physiology of kidney
- CLO-2 Explain Physiology of lower Urinary tract
- CLO-3 Label Physiology of the endocrine glands
- CLO-4 Enumerate Physiology of reproductive system

Course Pedagogy

The course pedagogy incudes a comprehensive study including the study of general structures and the specialized organs in a manner aimed at being student friendly. Various clinical aspects are discussed in relevance to the topic taught so as to relieve the monotony of the subject. Regular doubt clearing sessions, written assignments, quiz, chart and poster making and model making are some of the measures for learning. Periodic and surprise tests are taken to apprise and evaluate the students. They are taught on simulators for a live feeling. The practical includes the study of structures through mannequins which helps in holding the interest of the students.

Course contents-

MODULE-I Physiology of kidney and urine formation Glomerular filtration rate, clearance, Tubular function, Ureter, bladder, urethra-

MODULE 2-Physiology of the endocrine glands -, Hormones secreted by these glands, their classifications and functions.

Adrenal, Gonads Thyrnus, Pancreas, Pineal body, Thyroid, Parathyroid.

MODULE 3-Male -Functions of testes, pubertal changes in males, testosterone -action & regulations . Wheelby of secretion.

Female -Functions of ovaries and uterus, pubertal changes, menstrual cycle, estrogens and progesteroneaction and regulation.

Course References

- 1. PR Ashalatha & G Deepa'sTextb00k of ANATOMY & PHYSIOLOGY
- 2. N Geetha's Textbook of physiology Reference Books:
- 3. C C Chatterjee's Human Physiology
- 4. C C Chatterjee's Practical Physiology for Paramedical Courses
- 5. CN Chandrasekhar's Manipal Manual of Medical Physiology
- 6. RK Maurya's Medical Physiology

Online references:

Courser subscription for online anatomy topics

funit @

Jonkar

Mishka

G. Whenhy

Semester: II	Course Code: BMRIT 203	Credits- 06	Core	
No. Of Sessions	Lecture/Tutorial: 30	No. Of Prac	tical Hours: 60	
Course Pre-Requ	risites:	Numbers O	Session: 90	

Course Objectives:

The purpose of this course is to provide an understanding of physical concepts and underlying various technological applications. This course also provides fundamental idea about circuit analysis, working principles of machines. In addition, the course is expected to develop scientific temperament and analytical skill in students, to enable them logically tackle complex engineering problems in their chosen area of application.

Course Learning Outcomes

CLO 1-Use X-ray equipment and maintenance of equipment. Should know the Warm-up procedures of X-ray machine and cooling methods.

CLO 2- To be able to know how to use X-Ray exposure switches.

CLO 3- Demonstrate work flow Digital/IITV fluoroscopy equipment handling. Demonstrate Handling, care and maintenance of equipment & accessories

Course Pedagogy

The course will use the mixed technique of interactive lectures, regular assignments and practicing numerical. Teaching in this course is aimed to engage the students in strengthening their conceptual foundation and applying the knowledge gained to different day-to-day real world applications. It will not only help students to understand the fundamentals of applied physics but also improve skills and techniques for tackling practical problems. Course contents

MODULE 1 Basic Physics: Sound -The nature and propagation of sound wave (the characteristics of sound, wave theory), speed of sound in a material medium, intensity of sound, the decibel, Interference of sound waves, beats, diffraction, Doppler's effect.

MODULE 2 Heat- Definition of heat, temperature, Heat capacity, specific heat capacity, Heat transfer conduction, convection, radiation, thermal conductivity, equation for thermal conductivity (k), the value of k of various material of interest in radiology, thermal expansion, Newton's law of cooling, Heat radiation.

MODULE 3 Applied mathematics: Proportion: Direct proportion and inverse proportion, inverse square law with relevant examples, graphical representation of parameters that obey linear and exponential law: example of linear and semi-log plotting. Electricity and Magnetism:

quit

(M)

Pankar 1

Mishka

J. Wardhy?

A.C. and D.C. power supply with examples, single phase and poly phase power supply, switches, fuses, circuit breakers, earthling etc. main voltage drop: causes and remedy, cables; low tension, high tension. DC circuit, Ohm's law, resistivity, series and parallel combination, EMF, Kirchhoff's law, heating effect of current, Ammeter, voltmeter, Galvanometer, Magnets and magnetic field, force on an electric current in a magnetic field, force on electric charge moving in a magnetic field, magnetic field due to straight wire; force between two parallel wires, Ampere's law, electromagnet and solenoids.

MODULE "Rectification and Transformers: Thermionic emission; - variation of anode current with anode voltage and filament temperature; principle of rectification, wave form of half wave and full wave current/voltage wave form; Rectifiers: Introduction, energy bands in solids, the semiconductor, p-type and II-type semiconductors, density of charge carriers and conductivity, pn junction, p-n junction diode, p-n junction diode as rectifier (half- wave and full-wave rectifier), rectifiers relative merits and demerits; silicon, germanium diodes. Principles of transformer, Electromagnetic induction, transformer design, efficiency of transformer, source of power loss

MODULE 5 Electromagnetic radiation: Electromagnetic radiation spectrum, common properties of electromagnetic radiation; relationship between energy, frequency, wavelength and velocity e.g. X-rays and gamma rays. Properties of X-rays and gamma rays; General properties of-rays, velocity, frequency etc., photographic effect, photochemical effect — discoloration of salts, heating effect, biological effect; ionization of gases e.g. air. Interaction of radiation with matter: Transmission through matter, law of exponential attenuation, half value layer, attenuation coefficients; interaction of radiation with matter, classical scattering. Compton scatter, photo electric absorption, pair production; practical aspects of radiation absorption and transmission through body tissues. Measurement of X-rays: Unit of quantity of radiation exposure definition and application of 'roentgen', unit of quantity of radiation dose - definition and application of 'rad', 'gray' and 'rem';

MODULE 6 Principle and application of ionizations chamber and ionization reader unit, film and densitometer, thermos luminescent dosimeter (TID). X. Quality and quantity of X-rays: Specification and explanation of electron volt (eV), kilovolt (kV) and half value layer (H.V.L) as an index of penetration of the radiation. 9. Basic radiation protection: Historical development, dose equivalent limit, international recommendations and current code of practice for the protection of radiation workers and the public against ionizing radiation arising from medical and dental use; protective materials, lead - impregnated substances; building materials, lead equivalents of protective, personal monitoring; film badge, pocket dosimeter TLD badges and their uses and relative merits.

PRACTICAL

- X-Ray tubes and accessories, general features.
- · Portable X-Ray equipment.
- Image intensifier, its features, spot film.
- Radiation protection devices.
- · Effects of and mass.
- · Maintenance of X-ray equipment and accessories.

Mammography X-Ray tube

Dental X-Ray unit.

Mehka

of-Winchty of

Reference and Text Books-

Text book of radiology for residents and technicians- S K Bhargava.

Text book of Radiation physics.

www.wikiedia.co.in

Jurist m Parka J

C. Whoodrey J

Semester: II	Course Code: BMRIT 204	Credits- 06	Core
No. Of Sessions I.	ecture/ Tutorial : 30	No. Of Pract	ical Hours: 60
Course Pre-Requi	sites:	Numbers Of	Session: 90

Course Objectives

The purpose of this course is to provide an understanding of physical concepts and underlying various technological applications. This course also provides fundamental idea about circuit analysis, working principles of machines. In addition, the course is expected to develop scientific temperament and analytical skill in students, to enable them logically tackle complex engineering problems in their chosen area of application.

Course learning Outcomes

- CLO 1-Able to know production of X-ray.
- CLO 2- Explain high tension circuits, meter and exposure timers.
- CLO 3-Able to know interlocking systems, control of scattered radiation.
- CLO 4- Able to know handling and mechanism of Fluoroscopy.

Course Pedagogy

The course will use the mixed technique of interactive lectures, regular assignments and practicing numerical. Teaching in this course is aimed to engage the students in strengthening their conceptual foundation and applying the knowledge gained to different day-to-day real world applications. It will not only help students to understand the fundamentals of applied physics but also improve skills and techniques for tackling practical problems. Course contents

MODULE I- Production of x-rays; X-ray tube, gas filled x-ray tube, construction working and limitations; stationary anode x - ray tube; construction, working, methods of cooling the anode, rating chart and cooling chart; rotating anode x - ray tube; construction, working rating chart, speed of anode rotation, angle of anode inclination, dual focus and practical consideration in choice of focus, anode heel effect, grid controlled x - ray tube; effect of variation of anode voltage and filament temperature; continuous and characteristics spectrum of x - rays, inherentfilter and added filter, their effect on quality of the spectrum.

MODULE 2- High tension circuits: H.T. generator for x-ray machines, three phase rectifier circuits, three phase six rectifier circuit, three phase 12 rectifier circuit, high and medium frequency circuits; capacitance filter control and stabilizing equipment; mains voltage compensator, mains resistance compensator, compensation for frequency variation, control of Tube voltage, kV compensator; high tension selector switch, filament circuit, control of tube current, space charge compensation.

T.S. MISHRA UNIVERSITY, AMAUSI LUCKNOW

MODULE 3 Meters and exposure timers: Moving coil galvanometer: construction and working/conversion to millimeter, ammeter and voltmeter, meters commonly used in diagnostic x-ray machines, pre reading kV meter and millimeter, digital panel meters. Clockwork timers, synchronous motor timer, electronic timers, photo metric timers (fluorescent and photoelectric effect as applied in timers), ion chamber based timers, Integrated timer. 4. Interlocking circuits: Relays: description and working, use of relays in diagnostic machines for over load protection, circuit diagram; simplified circuit and block diagrams illustrating sequence of events from mains supply to controlled emission of x-rays.

MODULE 4 Control of scattered radiation: Beam limiting devices: cones, diaphragms, light beam collimator, beam centering device, methods to verify beam centering and field alignment; grids; design and control of scattered radiation, grid ratio, grid cut-off, parallel grid, focused grid, crossed grid, gridded cassettes, stationary and moving grid potter bucky diaphragms, various types of grid movements; single stroke movement, oscillatory movement and reciprocatory movement.

MODULE 5 Fluoroscopy: Fluorescence and phosphorescence description, fluorescent materials used in fluoroscopic screens, construction of fluoroscopic screen and related accessories, tilting table, dark adaptation. Image intensifier - Construction and working, advantages over fluoroscopic device, principles and methods of visualizing intensified image, basic principles of closed circuit television camera and picture tube. Videocon camera, CCD. Automatic brightness control, automatic exposure control, chamber selection during fluoroscopy. Serial radiography: Manual cassette changer, rapid automatic film changer, basic principles of cine fluoroscopy and angiography use of grid controlled x-ray tube.

MODULE 6 Care and Maintenance of X-ray equipment; General care; nlnctional tests; testing the performance of exposure timers, assessing the MA settings, testing the available KV, measurement of focal spot of an x-ray tube, testing the light beam diaphragm, practical precautions pertaining to Brakes and locks, H.T. cables, meters and controls, tube stands and tracks as well as accessory equipment.

Reference and Text Books- .

Text book of radiology for residents and technicians- S K Bhargava.

Text book of Radiation physics,

www.wikiedia.co.in

funit

@

Panka

Wishkor

J. Washer ?

Semester: II	Course Code: BMRIT 205	Credits- 03	Core	
No. Of Sessions Lecture/ Tutorial: 30		No. Of Practical Hours: No practical		
Course Pre-Requisites:		Numbers Of Session: 30		

Course Introduction:

Allied and healthcare professionals (Al-IPs) includes individuals involved with the delivery of health or healthcare related services, with qualification and competence in therapeutic, diagnostic, curative, preventive and/or rehabilitative interventions.

They work in multidisciplinary health teams in varied healthcare settings including doctors, nurses and public health officials to promote, protect, treat and manage a person 's physical, mental, social, emotional, environmental health and holistic well-being. The study of legal aspects and medical ethics helps them in putting into perspective the knowledge that they gain for better future

Course Objectives:

This course is designed to provide the students the basic knowledge in laws and ethics to follow as health professionals.

After completion of the course the students will be able to: Understand the various definitions

Course Learning Outcomes:

Upon successful completion of the course, the students should be able to:

CL01: Understood the importance of the professional laws and ethics.

CL02: Understood the legal aspects and medical ethics in health setups.

Course Pedagogy

The course pedagogy includes a comprehensive study including the study of general actions of the drugs. Various clinical aspects are discussed in relevance to the topic taught so as to relieve the monotony of the subject. Regular doubt clearing sessions, written assignments, quiz, presentations are some of the measures for learning. Periodic and surprise tests are taken to apprise and evaluate the students. The practical includes the study of drugs via presentations and viva voce.

Course Contents

Module 1

Curil

Role, Definition and Interaction with the patients and health care professionals, Ethical, Moral, and Legal Responsibilities, Patient safety and quality, restrain policies and role of health professionals. 1. Wooder

rchka

Biomedical waste Management, medical records and reports. anka.

Module 2

Medical terminology- The course employs a body systems-oriented, word-analysis approach to learning medical terminology.

Module 3

The goal of the class is to prepare students for the terminology they might encounter in their subsequent coursework, in their clinical rotations and ultimately in their roles as health care professionals.

Course Assessment Scheme

Students would be assessed continuously throughout the semester in the form of continuous evaluation. Periodic tests and surprise tests will be conducted. Students will have to submit written assignments, quiz for the topics. Practical will be conducted with viva. Midterm and end term evaluation will be done theoretically and practically. Students will also be assessed on the basis of presentations of various topics.

Books Recommended www.wikipedia.in

Lines

m_ Panka

Mishka

[.Workty.]

E	To a to	A A CO PORT	Coulie 03	Core	
Semester: II	Course Code: B	MICLI	Credits- 03	XXXX	
No. Of Sessions Lecture/ Tutorial: 30		No. Of Practical Hours: No practical			
Course Pre-Requisites:			Numbers Of Session: 30		

Course Introduction:

Environmental Studies is a multidisciplinary subject and hence requires a comprehensive knowledge on various subjects, which primarily include general science, social science, law and management practices. The prime objective of this course is to make the undergraduate students acquainted with the fundamental concepts of environmental science and to adopt eco-friendly technologies to facilitate conservation and regeneration of natural resources.

Course Objectives

The broad objectives of this course are:

To gain an understanding of the concepts fundamental to environmental science to understand the complexity of ecosystems and possibly how to sustain them to understand the relationships between humans and the environment.

To understand major environmental problems including their causes and consequences. To understand current and controversial environmental issues and possible solutions to environmental problems and their pros and cons.

To understand the hospital environment in general

Course Learning Outcomes

Upon successful completion of the course, the students should be able to:

CL01: To gain knowledge on the importance of environmental education and ecosystem.

CL02: To acquire knowledge about environmental pollution- sources, effects and control measures of environmental pollution.

CL03: To understand the treatment of wastewater and solid waste management.

CL04: To acquire knowledge with respect to biodiversity, its threats and its conservation and appreciate the concept of interdependence.

CL05: To be aware of the national and international concern for environment for protecting the environment.

CL06: To understand the environmental issues arising from different labs of the hospital

Course Pedagogy

The course follows the pedagogy of "learning by doing". Instructional design is based on creating situations in which the students have opportunities "to do things". The course would be delivered primarily through presentations and discussions led by students for active learning. The course facilitator would execute the same either by organizing in-class activities or out-of class projects. A topic would be introduced to the class by the facilitator. Next the students would break off into groups. Group discussions would be conducted to bring in various perspectives on the topic followed by presentations by the students and activities carefully designed around the given theme to achieve the course learning outcomes (CLOs). Performed of and learning demonstrated through the same activities/ presentations would be used for assessment.

Course Contents

The class would meet twice in a week for a period of 10 weeks approx.

Module 1. Introduction

Definition and scope and importance of multidisciplinary nature of environment. Need for public awareness.

Module 2. Natural Resources

Natural Resources and associated problems, use and over exploitation, case studies of forest resources and water resources.

Module 3. Ecosystems

Concept of Ecosystem, Structure, interrelationship, producers, consumers and decomposers, ecological pyramids-biodiversity and importance. Hotspots of biodiversity

Module 4. Environmental Pollution

Definition, Causes, effects and control measures of air pollution, Water pollution, Soil pollution, Marine pollution, Noise pollution, Thermal pollution, nuclear hazards, Solid waste management: Causes, effects and control measure of urban and industrial wastes. Role of an individual in prevention of pollution. Pollution case studies, Disaster management: Floods, earthquake, cyclone and landslides.

Module 5. Social blemishes and the Environment

From Unsustainable to Sustainable development, urban problems related to energy, Water conservation, rain water harvesting, water shed management Resettlement and rehabilitation of people; its pros and concerns. Case studies, Environmental ethics: Issues and possible solutions. Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case studies, Wasteland reclamation, Consumerism and waste products. Environment Protection Act, Air (Prevention and Control of Pollution) Act. Water (Prevention and control of pollution) Act. Wildlife Protection Act, Forest Conservation Act, Issues involved in enforcement of environmental legislation Public awareness.

T.S. MIŠHRA UNIVERSITY, AMAUSI LUCKNOW

Human Population and the Environment, Population growth, variation among nations. Population explosion-Family Welfare Programme. Environment and human health, Human Rights, Value Education, HIV/AIDS, Women and child Welfare, Role of Information Technology in Environment and human health. Case studies.

Module 6. Understanding the Hospital Environment

Module 7 Understanding the environment in the following clinical laboratories: Microbiology, Biochemistry, Histopathology, Hematology

Module 8. Clinical laboratory hazards to the environment from the following and means to prevent: Infectious material, Toxic Chemicals, Radioactive Material, Other miscellaneous wastes. Course Assessment

Assessment Scheme

Students would be assessed continuously at four assessment points during the course through the activities and deliverables mentioned in the table in point 4 above. Course assessment is based on a student's activity/ assignments/quizzes (records/ evidence of his/her performing and learning). They could be in the form of PowerPoint Presentations, Videos watched etc. The details of the components of assessment are detailed next.

Course References Text Book:

Chawla S., 2012. A Textbook of Environmental Studies, Tata Mc Graw Hill, New Delhi.

Reference Books:

Reference 1: Jadhav, H &Bhosale, V.M., 1995. Environmental Protection and Laws. Himalaya Pub. House, New Delhi.

Reference 2: Gadi R., Rattan, S., 2006. Environmental Studies, KATSON Books, New Delhi. Reference 3: Mckinney, M.L. & School, R.M., 1996. Environmental Science Systems & Solutions, Web enhanced edition.

Reference 4: Wanger K.D., 1998. Environmental Management. W.B. Saunders Co. Philadelphia, USA

Papers:

Beckerman, W. (1992). Economic growth and the environment: Whose growth? Whose environment? World Development, 20(4), 481-496.

Lorente, D.B., Shahbaz, M., Roubaud, D, Farhani, S. (2018) How economic growth, renewable electricity and natural resources contribute to C02 emissions? Energy Policy, 113©, 356-367. Kumar Reddy D.H., Lee S.M. (2012) Water Pollution and Treatment Technologies, J Environ Anal Toxicol, 2(5) e103.

Dwivedi, A. K. (2017) Researches In Water Pollution: A Review. International Research Journal of Natural and Applied Sciences, 4(1) 118-142.

Third Semester (13-18 Months)

Subject Code	Course Titles		Hours Per week		Marks			CR
	301	L	Т	P	Internal	External	Total	
BMRIT -301	Clinical Radiography and positioning-I	3	1		40	60	100	4
BMRIT -302	Modern radiological & Imaging Equipment including physics	3	10	*:	40	60	100	4
BMRIT -303	Contrast & Special Radiography procedures	3	1		40	60	100	4
BMRIT -304	Clinical Radiography and positioning-I	3	1		40	60	100	4
BMRIT -305	Modern radiological & Imaging Equipment including physics	•	•	4	40	60	100	2
BMRIT -306	Contrast & Special Radiography procedures			4	40	60	100	2
	Total	12	6	16	240	360	600	20
	Total Hours in Semester		550	Ě			ň	

NOTE:

Abbreviations: L - Lecture, T - Tutorials and P - Practical

Considering four months per semester as working months, total contact hours per semester shall be 550 (Five hundred and Fifty)

Sunet -

my Pankal Mishkal

Werker J. Wanton

Semester: III	nical Radiography Positioning			
	Course Code: BMRIT 301	Credits- 06	Core	
	ecture/ Tutorial : 30	No. Of Prac	tical Hours: 60	
Course Pre-Requisites:		Numbers Of Session: 90		

Course Objectives

This course is designed to provide the students the basic knowledge in Radiography. At the end of the course, the student should be able to:

- Explain the role of radiographer and positioning of various body parts, normal functioning of various organ systems of the body and their interactions.
- Elucidate the radiological aspects of normal growth and development.
- Describe the patient response and adaptations to environmental stresses.

Course learning Outcomes

- CLOI- Explain how to take good quality images with as low as radiation dose in upper limb and lower limb.
- CLO2- Enumerate immobilization technique and Immobilization devices. Use positioning devices.
- CLO3- Work in clinical practice and know about patient care
- CLO4- Able to know and perform dental radiography
- CLO5- Able to know abdominal radiography.

Course Pedagogy

The course pedagogymcudes a comprehensive study including the study of general structures and the specialized organs in a manner aimed at being student friendly. Various clinical aspects are discussed in relevance to the topic taught so as to relieve the monotony of the subject. Regular doubt clearing sessions, written assignments, quiz, chart and poster making and model making are some of the measures for learning. Periodic and surprise tests are taken to apprise and evaluate the students. They are taught on simulators for a live feeling. The practical includes the study of structures through mannequins which helps in holding the interest of the students.

Course contents

MODULE I: Upper limb: Technique for hand, fingers, thumb, wrist joint carpal bones, forearm, elbow joint, radio ulnar joints and hummers supplementary techniques for the above. E.g. Carpal tunnel view, ulnar groove, head of the radius, supracondylar projections. Lower limb: Technique for foot, toes, great toe, tarsal bones, calcaneus, ankle joint, lower leg, knee, patella & femur. Supplementary techniques: Stress view for torn ligaments, a. Sub talar joint and talo calcaneal joint. b. Inter condylar projection of

T.S. MISHRA UNIVERSITY, AMAUSI LUCKNOW

the knee, c. Tibia tuberele, d. Length measurement technique.

MODULE 2: Shoulder girdle and thorax: Technique for shoulder joint, scapular, clavicle, acromio clavicular joints, sternum, ribs, stemo-clavicular joint. Supplementary projections and techniques a recurrent dislocation of shoulder. b. Traumatic dislocation of shoulder. c. Cervical ribs.

MODULE 3: Vertebral column: Technique for atlanto-occipital joint, cervical spine, cervico thoracic spine, thoracic spine, thoraco- lumber spine, lumbo sacral spine, sacrum and coccyx. Supplementary techniques to demonstrate: a. Scoliosis. b. Kyphosis c. Spondylolisthesis d. Disc lesion e. Union of spinal graft. Adaptation of techniques to demonstrate specific pathologies. Pelvic girdle and hip region: Technique for whole pelvis. Ilium, ischium, pubic bones, sacro iliac joint, symphysis pubis, hip joint, acetabulum neck of femur, greater and lesser trochanter.

MODULE 4: Supplementary techniques- a. Congenital dislocation of hips b. Epiphysis of femur: c. Lateral projections for hip joints to show femoral head and neck relationship. Skeletal survey: Skeletal survey for metabolic bone disease, metastases, hormonal disorder, renal disorders. 8. Skull: Basic projections for cranium, facial bones, nasal bones and mandible. Technique for a. Petrous temporal for mastoids. Internal auditory canal.

Accessory nasal sinuses. b. Tempero - mandibular joint. - Orbits and optic foramen. Zygomatic arches. c. Styloid process. - Pituitary fossa. - Jugular foramen.

MODULE 5: Dental Radiography: Technique for intra oral full mouth, occlusal projections, extra oral projections including orthopantomography, Supplementary techniques. Upper respiratory system: Technique for post nasal airways, larynx, trachea, thoracic inlet Valsalva manoeuvre. - Phonation. Lungs and Mediastinum:

MODULE 6: Technique for routine projections: Projections: Antero-postenor, obliques, lordotic, apical projection, use of penetrated posteroanterior projection. - Expiration technique. - Technique for pleural fluid levels and adhesions. Abdominal viscera: For plain film examination, Projection for acute abdomen patients. Technique to demonstrate:

· All views and techniques Abdomen: Gastro-intestinal tract, urinary tract Skeletal Survey.

PRACTICAL

Regional Radiography:

- All Views of Hip and Pelvis: Theatre procedure for Hip, Pinning and Reduction, Pelvis, Sacro-ilac Joint, Pelvis Bone, Acetabulum.
- All Views and techniques of Vertebral Column: Cervical Spine, Thoracic spine, Lumbar spine, Sacrum, Coccyx

Books Recommended-

Clark's Radiography- Clark Radiographic positioning.

www.wikipedia.co.in www.radiopedia.co.in

T.S. MISHRA UNIVERSITY, AMAUSI LUCKNOW

Janka.

J. Wardhan!

Mishka

Semester: 111	Course Code: BMRIT 302	Credits- 06	Core
No. Of Sessions L	ecture/ Tutorial : 30	No. Of Practical Hours: 60	
Course Pre-Requi	sites:	Numbers Of	Session: 90

Course Objectives

The purpose of this course is to provide an understanding of physical concepts and underlying various technological applications of mammography and computed radiography and DSA. Should able to scanning also in mammography, computed radiography and DSA.

Course learning Outcomes

- CLO I-Perform the procedure of mammography scanning.
- CLO 2-Enumerate and able to know the principle computed radiography.
- CLO 3-Able to know and perform vascular imaging with PACS

Course Pedagogy

The course will use the mixed technique of interactive lectures, regular assignments and practicing numerical. Teaching in this course is aimed to engage the students in strengthening their conceptual foundation and applying the knowledge gained to different day-to-day real world applications. It will not only help students to understand the fundamentals of physics of mammography and CT scan but also improve skills and techniques for tackling practical problems. Course contents

MODULE-I Mammography, History of mammography, Mammographic equipment, Mammographic radiation dose and exposure Dedicated mammographic unit and its special features, Types of mammography Routine Mammographic Positioning & Views with additional views and technical considerations, Wire localization in mammography.

MODULE 2 Special equipment: Portable and mobile x-ray units, dental x-ray machine, skull table Generator, x-ray tubes; Accessories; Resolution; Quality control; Application and role in medicine., digital radiographic equipment, digital subtraction techniques. Tomography: Body section radiography, basic principle and equipment, multi section tomography, various types of tomographic movements, Dual energy x-ray absorptiometry (DEXA), stats can.

MODULE 3 Computed radiography: its principle, physics & equipment. Digital Radiography. Flat panel digital fluoroscopy and radiography system, Direct and indirect digital radiography and fluoroscopy systems. Digital radiography and Computed radiography its advantages, disadvantages and applications.

funel

m Panka

Mishka

T.S. MISHRA UNIVERSITY, AMAUSI LUCKNOW

MODULE 4 Vascular Imaging Equipment: Introduction, historical developments, Principle, scanned projection radiography, digital subtraction angiography, applications and definition of terms. 4. Picture archiving and communication system (PACS) Practical

- 1) X-Ray tubes and accessories, general features.
- 2) Portable X-Ray Equipment.
- 3) Image intensifier, its features, spot film.
- 4) Radiation protection devices
- 5) Effects of kV and mAs.
- 6) Maintenance of X-ray equipment and accessories.
- 7) Mammography X-Ray tube
- 8) Dental X-Ray unit.

Books Recommended-

Clark's Radiography- Clark / Text book of radiology for residents and technicians- S K Bhargava

Radiographic positioning- Garkal

www.wikipedia.co.in

www.radiopedia.co.in

June 1

(m)

Panka]

Course Title:- C	ontrast & Special Radiography	y Procedures		
Semester: III		Credits- 06	Core	
No. Of Sessions	Lecture/ Tutorial : 30	No. Of Pract	ical Hours: 60	
Course Pre-Req	uisites:	Numbers Of	Session: 90	

Course Objectives-

This course is designed to provide the students the basic knowledge in systematic investigations with using contrast media and image intensifier.

Course learning outcomes-

of the following special procedures

- CLO 1- Explain indication, contraindication and reactions of contrast media.
- Demonstrate how to take in minimum numbers of exposures in each special investigation.
- CLO 2-Demonstratethe positioning and technique of the special studies.
- CLO 3-Explainthe technique of all GIT study according to investigation.
- CLO 4- Demonstrate surface anatomy. To be able to know the technique behind the radiography.

Course contents

MODULE 1: Special radiographic procedures Responsibility of Radiographer during Radiological Procedures. Preparation of Patient for Different Procedures. Contrast Media Positive and Negative, Ionic & Non — Ionic Adverse Reactions To Contrast Media and Patient Management Emergency Drugs in the Radiology Department Emergency Equipments In the Radiology Department Aseptic technique Indications, contraindications, basic techniques and relationship to other techniques

MODULE 2: Gastrointestinal Tract: Fluoroscopy, general considerations, responsibility of radiographers Barium swallow, pharynx and oesophagus Barium meal and follow through Hypotonic duodenography Small bowel enema Barium Enema routine projections for colon and rectum, colonic activators; double contrast studies; colostomy. Special techniques for specific disease to be examined Water soluble contrast media - eg. gastrograffin studies b. Salivary glands: Routine technique, procedure — sialography.

MODULE 3: Biliary system: Plain film radiography Intravenous Cholangiography Percutaneous Cholangiography Endoscopic retrograde cholangio-pancreatography (ERCP) Operative cholangiography Post-Operative cholangiography (T - tube Cholangiography)

MODULE 4: Urinary system: Intravenous urography Retrograde pyelography Antegrade pyelography Cystography and maturating cystouresthrography Urethrographic (ascending) Renal puncture

MODULE 5: Female reproductive system: Hysterosalpingography. Respiratory system:

T.S. MISHRA UNIVERSITY, AMAUSI LUCKNOW

Bronchography: Awareness, h. Sinusography: Routine technique and procedure,

MODULE 6: Multiple radiography. Uses of soft tissue radiography. I. High kV Radiography: General principles Relation to patient dose Change in radiographic contrast. Scatter elimination; beam collimation; grid ratio, Speed and type of grid movement. Radiographic factor; application and uses. m. Localization of foreign bodies: General location principles. Ingested; inhaled; inserted; embedded foreign bodies. Foreign bodies in eye. Preparation of the area to be investigated. Appropriate projection for all Techniques to locate non-opaque foreign body.

PRACTICAL

- Radiography in various positions for all the special radiological procedures, using contrast media
- Identification of various films for all the special radiological procedures, using contrast media and related pathologies

Books Recommended-

Clark's Radiography- Clark / Text book of radiology for residents and technicians- S K Bhargava Radiographic positioning- Garkal

Radiology- Special investigation - Champman.

www.wikipedia.co.in//www.radiopedia.co.in

Sunt @ Panka Menka

Fourth Semester (19-24 months)

Subject Code	Course Titles	Hours per week		per week Marks	CR			
		L	т	P	Internal	External	Total	
BMRIT-401	Physics of newer imaging modalities	3	Ĭ.	138	40	60	100	4
BMR1T -402	Clinical Radiography positioning-II	3	1	-	40	60	100	4
BMR1T -403	Newer modalities imaging techniques including patient care	3	1		40	60	100	4
BMRIT-404	Quality control in radiology and radiation safety	3	1		40	60	100	4
BMRIT-405	Physics of newer imaging modalities			4	40	60	100	2
BMRIT -406	Clinical Radiography positioning-II	*	. *	4	40	60	100	2
BMRIT-407	Newer modalities imaging techniques including patient care	2	28	4	40	60	100	2
BMRIT -408	Quality control in radiology and radiation safety	*		4	40	60	100	2
	Total	12	6	16	320	480	800	24
	Total Hours in Semester		550	_				1

NOTE:

Abbreviations: L - Lecture, T - Tutorials and P - Practical

Considering four months per semester as working months, total contact hours per semester shall be 550 (Five hundred and Fifty)

Lunet @

Panko

Mishka

C. Whardheyand

Semester: IV	nysics of newer imaging moda		
	Course Code: BMRIT 401	Credits- 06	Core
No. Of Sessions	Lecture/ Tutorial : 30	No. Of Pract	ical Hours: 60
Course Pre-Requ	isites:	Numbers Of	Session: 90

Course Objectives

This course is designed to provide the students the basic knowledge in Radiography with using newer modalities of radiology. At the end of the course, the student should be able to know about ultrasonography Computed Tomography, Generation of CT Scanner, Magnetic resonance imaging, fusion imaging PET, Contrast media using, handling and tele radiology.

Course learning Outcomes

CL01: Able to know Computed Tomography its principle, various generations and advancements

CL02: Able to know Magnetic Resonance Imaging- its principle, advancements and applications.

CL03: Explain and able to know Ultrasonography, Color Doppler- its principle, advancements and applications. Digital Radiography and Digital subtraction angiography equipment- principle, advancements and applications.

CL04: "Able to know Fusion Imaging including PET-CT, PET- MRI. Digital Mammography, DEXA equipment- principle, advancements and applications.

CL05: Able to know tele radiology HIS, RIS and PACS, Image processing in digital radiography systems: Post processing techniques in console using CR, DR and flat panel fluoroscopy systems

Course Pedagogy

The course will use the mixed technique of interactive lectures, regular assignments and practicing numerical. Teaching in this course is aimed to engage the students in strengthening their conceptual foundation and applying the knowledge gained to different day-to-day real world applications. It will not only help students to understand the fundamentals of physics of mammography and CT scan/ultrasound/ PACS but also improve skills and techniques for tackling practical problems.

Course Contents

MODULE I-Basic principle of CT scan, history of CT Scan, EMI, advantages and disadvantages, Equipment description.

MODULE 2-Scanning principle, Image acquisition, Image reconstruction, image manipulation, Image

Lunes

T.S. MISHRA UNIVERSITY, AMAUSI LUCKNOW

Wes had

t reports

display and documentation, Scanning parameters. Advantages and disadvantages.

MODULE 3_EHistory of MRI, Magnetism, Basic Principle, hardware etc. Types of Contrast agents used in MRI. Physical and physiological basis of magnetic relaxation, Image contrast and noise. Spin Echo, Inversion Recovery, Gradient Echo

MODULE-4Applications and Apparatus for nuclear medicine, Application, Function and instrumentation. Definition, Applications, Clinical uses, advantages & disadvantages of PETCT. Definition, Applications, Clinical uses, advantages & disadvantages of PET-MRI

MODULE -5 Benefits vs risk or PET-CT and PET-MRI. Characteristics and half-life of Radionuclides Commonly used Radionuclides. Routine protocols Indication and contraindications of PET. Patient preparation technique in PET Scan.

Books Recommended-

Clark's Radiography- Clark / Text book of radiology for residents and technicians- S K Bhargava Radiographic positioning- Garkal

Radiology- Special investigation — Champman.

CT made Easy www.wikipedia.co.in www.radiopedia.co.in

Lunil @ Panka]

d-Wardhu 1

	nical Radiography Positionin			
Semester: IV	Course Code: BMRIT 402	Credits- 06	Core	
No. Of Sessions Lecture/ Tutorial: 30		No. Of Practical Hours: 60		
Course Pre-Requ	isites:	Numbers Of	Session: 90	

Course Objectives

This course is designed to provide the students the basic knowledge in radiography. At the end of the course, the student should be able to:

Course Learning Outcomes

- CLOI-Explain the role of radiographer and positioning of various body parts, normal functioning of various organ systems of the body and their interactions.
- CL02-Elucidate the radiological aspects of normal growth and development.
- CL03-Describe the patient response and adaptations to environmental stresses.

Course Pedagogy

The course pedagogy incudes a comprehensive study including the study of general structures and the specialized organs in a manner aimed at being student friendly. Various clinical aspects are discussed in relevance to the topic taught so as to relieve the monotony of the subject. Regular doubt clearing sessions, written assignments, quiz, chart and poster making and model making are some of the measures for learning. Periodic and surprise tests are taken to apprise and evaluate the students. They are taught on simulators for a live feeling. The practical includes the study of structures through mannequins which helps in holding the interest of the students.

Course contents-

MODULE I Radiography technique comprising of the complete. Radiography of Skull and Radiography of cranial bones; including special techniques for sellaturcica, orbits, opticforamina, superior orbital fissure and infenor orbital fissure etc. Facial bones; Paranasal sinuses, Temporal bone and Mastoids. Dental Radiography: Radiography of teeth-intra oral, extra oral and occlusal view.

MODULE 2 Abdomen: Preparation of patient. General abdominal radiography and positioning for fluid and air levels. Plain film examination. Radiography of female abdomen to look for pregnancy. Radiography in case of acute abdomen. Microradiography: Principle, advantage, technique and applications. Stereography - Procedure - presentation, for viewing, stereoscopes, stereometry.

MODULE 3: High KV techniques principle and its applications. Soft tissue Radiography Localization

Lunit

T.S. MISHRA UNIVERSITY, AMAUSI LUCKNOW

of foreign bodies. Various techniques Ward/mobile radiography - electrical supply, radiation protection, equipment and instructions to be followed for portable/ward radiography.

MODULE 4: Operation theatre techniques: General precautions, Asepsis in techniques checking of mains supply and functions of equipment, selection of exposure factors, explosion risk, radiation protection and rapid processing techniques. Trauma radiography/Emergency radiography. Neonatal and Pediatric Radiography, Tomography and Tomosynthesis, Dual energy X-ray absorptiometry, Forensic Radiography.

PRACTICAL

- a. All views and techniques Abdomen: Gastro-intestinal tract, urinary tract
- b. Skeletal Survey.

Books Recommended-

Clark's Radiography- Clark / Text book of radiology for residents and technicians- S K Bhargava Radiographic positioning- Garkal

Radiology- Special investigation - Champman.

www.wikipedia.co.in//www.radiopedia.co.in

Swet

Janka Michkey

Semester: IV	Course Code: BMRIT	Credits- 06	Core
	403		
No. Of Sessions Le	eture/Tutorial: 30	No. Of Practical Hou	rs: 60
Course Pre-Requis	ites:	Numbers Of Session:	90

Course Objectives

This course is designed to provide the students the basic knowledge in Radiography with patient care and code of ethics. At the end of the course, the student should be able to:

Course Learning Outcomes

CLOI- Understood about Introduction to hospital staffing and Medical records and documentation. CL02
- must know about Legal issues and Professional ethics. CL03- How to handle and must know Departmental Safety and Infection control

CL04- Understood Body mechanics and transferring of patient

Course Contents-

MODULE 1 interventional Radiography: Basic angiography and DSA: a. History, technique, patient care b. Percutaneous catherisation, catheterization sites, Asepsis c. Guidewire, catheters, pressure injectors, accessories d. Use of digital substraction- Single plane and bi-plane All forms of diagnostic procedures including angiography, angioplasty, bilary examination, renal evaluation and drainage procedure. Central Nervous System: a. Myelography b. Cerebral studies c. Ventriculography Arthrography: Shoulder, Hip, Knee, Elbow 4. Angiography: a. Carotid Angiography (4 Vessel angiography) b. Thoracic and Arch Aortography c. Selective studies: Renal, SMA, Coeliac axis d. Vertebral angiography e. Femoral arteriography f. Angiocardiography Venography: a. Peripheral venography b. Cerebral venography c. Inferior and superior venocavography d. Relevant visceral phlebography 6. Cardiac catheterization procedures: PTCA, BMV, CAG, Pacemaker, Electrophysiology.

MODULE 2 Microbiology 1. Introduction and morphology - Introduction of microbiology, Classification of microorganisms, size, shape and structure of bacteria. Use of microscope in the study of bacteria. 2. Growth and nutrition -nutrition, culture media, types of medium with example and uses of culture media in diagnostic bacteriology, antimicrobial sensitivity test Sterilization and disinfection - principles and use of equipments of sterilization namely hot air oven, autoclave and serum inspissator, pasteurization, anti-septic and disinfectants. Introduction to immunology, bacteriology, parasitology, mycology.

MODULE 3 Hospital procedure: Hospital staffing and organization; records relating to patients and departmental statistics; professional attitude of the technologist to patients and other members of the staff; medico- legal aspects; accidents in the departments, appointments, organization; minimizing waiting time; out-patient and follow-up clinics; stock-taking and stock keeping. Care of the patient: FIRST

Surit

T.S. MISHRA UNIVERSITY, AMAUSI LUCKNOW

contact with patients in the department; management of chair and stretcher patients and aids for this, management of the unconscious patient; elementary hygiene; personal cleanliness; hygiene in relation to patients (for example clean linen and receptacles, nursing care; temperature pulse and respiration; essential care of the patient who has a tracheostomy; essential care of the patient who has a colostomy; bedpans and urinals; simple application of a sterile dressing.

MODULE 4 First aid: Aims and objectives of first aid; wounds and bleeding, dressing and bandages; pressure and splints, supports etc. Shock; insensibility; asphyxia; convulsions; resuscitation, use of suction apparatus, drug reactions; prophylactic measures; administration of oxygen; electric shock; burns; scalds; hemorrhage; pressure points; compression band. Fractures; splints, bandaging; dressing, foreign bodies; poisons. 4. Infection: Bacteria, their nature and appearance; spread of infections; auto-infection or cross-infection; the inflammatory process; local tissue reaction, general body reaction; ulceration; ascepsis and antisepsis. Universal precautions, hospital acquired infections- HIV, Hepatitis B, C, and MRSA etc. 5. Principles of asepsis: Sterilization - methods of sterilization; use of central sterile supply department; care of identification of instruments, surgical dressings in common use, including filamented swabs, elementary operating theatre procedure; setting of trays and trolleys in the radio imaging department (for study by radio imaging students only) 6. Departmental procedures: Department staffing and organisations; records relating to patients and departmental statistics; professional attitudes of the technologist to patients and other members of the staff, medico-legal aspects accidents in the department;

PRACTICAL

Newer Modalities Imaging Techniques including patient care:

- Medical records and documentation
- Legal issues in radiology department, PNDT Act
- Professional ethics and Code of conduct of radiographer
- Handling of patients: Seriously ill and traumatized patients, visually impaired, hearing and speech impaired patients, mentally impaired patients, infectious patients
- Departmental Safety
- Infection control: skin care, donning of gowns, gloves, face masks, head caps, shoe covers.
- 7. Vitals signs
- Body mechanics and transferring of patient, draw sheet lift, use of slide boards, wheelchair to couch, couch to wheelchair, couch to table, three men lift and four men lift.
- 9. First aid: artificial respiration, hemostasis
- 10. Local anaesthesia and general anaesthesia
- 11. Facilities regarding general anaesthesia in the X-ray department
- 12. Management of adverse reactions to contrast media

V. Whaten of

Surel

T.S. MISHRA UNIVERSITY, AMAUSI LUCKNOW SHKA

ooks Recommended-

Clark's Radiography- Clark / Text book of radiology for residents and technicians- S K Bhargava

Radiographic positioning- Garkal

Radiology- Special investigation — Champman.

www.wikipedia.co.in www.radiopedia.co.in

Line (m) Ronka Mishka

C.W.Juny

Semester: IV	Course Code:	BMRIT	Credits- 06	Core	
No. Of Sessions Lecture/ Tutorial : 30			No. Of Practical Hours: 60		
Course Pre-Requ			Numbers Of Session: 90		

Course Objectives

This course is designed to provide the students the basic knowledge in Radiography. At the end of the course, the student should be able to understand:

- 1. Radiation protection
- 2. Biological effects of radiation
- 3. Planning of radiation installation-protection primary & secondary radiation
- 4. Personnel monitoring systems

Course learning Outcomes

- CLO 1 -Enumerate the guidelines of all respective organization. Enumerate the risk and effects of the radiation.
- CLO 2-Label Demonstrate how to use and care of all types of lead aprons
- CLO 3-Demonstrate the handling and how to use TLD's and badges as per guidelines

Course contents

MODULE 1 Objectives of quality Control: Improve the quality of imaging thereby increasing the diagnostic value; to reduce the radiation exposure; Reduction of film wastage and repeat examination; to maintain the various diagnostic and Imaging units at their optimal performance. Quality assurance activities: Equipment selection phase; Equipment installation and acceptance phase; Operational phase; Preventive maintenance. Quality assurance programme at the radiological faculty level: Responsibility; Purchase; Specifications; Acceptance; Routine testing; Evaluation of results of routine testing; Quality assurance practical exercise in the X ray generator and tube; Image receptors from processing; Radiographic equipment; Fluoroscopic equipment; Mammographic equipment; Conventional tomography; Computed tomography; Film processing, manual and automatic; Consideration for storage of film and chemicals; Faults tracing; Accuracy of imaging- image distortion for digital imaging devices. LASER printer calibration

MODULE 2 Quality assurance programme tests: General principles and preventive maintenance for routine, daily, weekly, monthly, quarterly, annually — machine calibration.

Basic concepts of quality assurance — LASER printer - Light beam alignment; X-ray out-put and beam quality check; KVp check; Focal spot size and angle measurement; Timer check; mAs test; Grid alignment test; High and low contrast resolutions; Mechanical and electrical checks; Cassette leak check; Proper

Suntil

m_

T.S. MISHRA UNIVERSITY, AMAUSI LUCKNOW

Tw.

creen-film contact test; Safe light test; Radiation proof test; Field alignment test for fluoroscopic device; Resolution test; Phantom measurements CT, US and MRI

MODULE 3 Quality assurance of film and image recording devices: Sensitometry; Characteristic curve; film latitude; Film contrast; Film speed Resolution; Distortion; Artifacts of films and image recording. Monitor calibration, SMPTE pattern 6, Maintenance and care of equipment: Safe operation of equipment; Routine cleaning of equipment and instruments; Cassette, screen maintenance; Maintenance of automatic processor and manual processing units; Routine maintenance of equipments; Record keeping and log book maintenance; Reject analysis and objectives of reject analysis programme. Care and maintenance of diagnostic equipment: General principles and preventive maintenance for routine - daily, Weekly, monthly, quarterly, annually; care in use, special care of mobile equipment.

MODULE 4 Radiation safety in diagnostic Radiology 1. Radiation Quantities and Units: Radiation-Radioactivity- Sources of radiation - natural radioactive sources -cosmic rays terrestrial radiation - - man made radiation sources. Units of radiation - Quality factor - FluxFluence-Kerma- Exposure- Absorbed lose- Equivalent Dose- Weighting Factors-Effective Dose - Occupational Exposure Limits - Dose limits o public.

MODULE 5 Biological Effects of radiation: Ionization, excitation and free radical formation, hydrolysis of water, action of radiation on cell-Chromosomal aberration and its application for the biological dosimetry- Effects of whole body and acute irradiation, dose fractionation, effects of ionizing radiation on each of major organ system including fetus Somatic effects and hereditary effects- stochastic and deterministic effects-Acute exposure and chronic exposure-LD50 - factors affecting radio sensitivity. Biological effects of nonionizing radiation like ultrasound, lasers, IR, UV and magnetic fields. Radiation detection and Measurements: Ionization of gases- Fluorescence and Phosphorescence -Effects on photographic emulsion. Ionization Chambers proportional counters- G.M countersscintillation detectors liquid semiconductor detectors — Gamma ray spectrometer. Measuring systems — free air ionization chamber — thimble ion chamber — condenser chamber Secondary standard dosimeters film dosimeter chemical dosimeter. Thermoluminescent Dosimeter. -Pocket dosimeter Radiation survey meter- wide range survey meter -zone monitor-contamination monitor their principle function and uses. Advantages & disadvantages of various detectors & its appropriateness of different detectors for different type of radiation measurement. Dose and Dosimetry, CT Dose Index (CTDI, etc.), Multiple Scan Average Dose (MSAD), Dose Length Product (DLP), Dose Profile, Effective Dose, Phantom Measurement Methods, Dose for Different Application Protocols, Technique Optimization. Dose area product in fluoroscopy and angiography systems, AGI) in mammography.

Radiation protection: Radiation protection of self and patient. Principles of radiation protection, time distance and shielding, shielding - calculation and radiation survey — ALARA- personnel dosimeters (TLD and film batches) occupational exposure.

MODULE 6 Radiation Hazard evaluation and control: Philosophy of Radiation protection, effects of time, Distance & Shielding. Calculation of Work load, weekly calculated dose to radiation worker & General public Good work practice in Diagnostic Radiology. Planning consideration for radiology, including Use factor, occupancy factors, and different shielding material.

T.S. MISHRA UNIVERSITY, AMAUSI LUCKNOW

PRACTICAL

- 1) Knowledge of all hazards, education of general Public by posters and seminars
- Safety of women and children, pregnant women, safety of patient attendants, radiation workers and hospital staff, checking of lead aprons, leakage radiation from tube head, radiation survey in and around X — ray installation.
- 3) Use of TLD film badges, GM counters, Scintillation detectors, Liquid scintillator, Pocket dosimeters and use of protective devices etc. Keeping of dose records of radiation workers, steps after high exposure report and investigations.
- 4) Biological effects of radiation- The cell effect of ionizing radiation on cell.
- 5) Somatic effects and hereditary effect. Stochastic and deterministic effect.

Books Recommended-

Clark's Radiography- Clark / Text book of radiology for residents and technicians- S K Bhargava Radiographic positioning- Garkal

Radiology- Special investigation - Champman.

www.wikipedia.co.in // www.radiopedia.co.in

funit @ Pankay Mishka

J. Whaller

Fifth Semester (25-30 months)

Subject Code	Course Titles	Course Titles Hours Per week			CR			
		L	Т	P	Internal	External	Total	
BMRIT -501	Cross sectional anatomy and physiology	3	1	(*	40	60	100	4
BMRIT -502	Physics of advanced imaging technology	3	1		40	60	100	4
BMRIT -503	Radiographic techniques of advanced imaging technology	3	1	+	40	60	100	4
BMRIT -504	Research Methodology & Biostatistics -I	3	1	-	40	60	100	4
BMRIT -505	Regulatory Requirements in diagnostic radiology &imaging acts and rules	3	1		40	60	100	2
BMRIT -506	Cross sectional anatomy and physiology	-		4	40	60	100	2
BMRIT -507	Physics of advanced imaging technology	-	-	4	40	60	100	2
BMRIT -508	Radiographic techniques of advanced imaging technology		-	4	40	60	100	2
	Total	15	5	12	320	480	800	24
	Total Hours in Semester		5	50				

NOTE:

Abbreviations: L - Lecture, T - Tutorials and P - Practical

Considering four months per semester as working months, total contact hours per semester shall be 550 (Five hundred and Fifty)

Swil @

Panka

Michka

Semester: V	oss Sectional anatomy and Ph Course Code: BMRIT		Core	
	501			
No. Of Sessions l	.ecture/ Tutorial : 30	No. Of Pract	ical Hours: 60	
Course Pre-Requ	isites:	Numbers Of	Session: 90	

Course Introduction

Allied and healthcare professionals (AHPs) includes individuals involved with the delivery of health or healthcare related services, with qualification and competence in therapeutic, diagnostic, curative, preventive and/or rehabilitative interventions.

They work in multidisciplinary health teams in varied healthcare settings including doctors, nurses and public health officials to promote, protect, treat and manage a person's physical, mental, social, emotional, environmental health and holistic well-being. The study of anatomy helps them in putting into perspective the knowledge that they gain for better good of humanity.

Course learning outcomes-

- CLO I identify cross-sectional anatomy in the sagittal, coronal and axial planes on CT and MR images.
- CLO 2 Describe anatomical structural relationships. Recognize normal anatomy and build a personal resource system for future study.
- CLO 3. Locate and identify pertinent cerebral, upper thorax, mid-thorax, and abdominal anatomy. On CT and MR images, identify anatomical structures of the body and of the head.
- CLO 4 Distinguish between arterial and venous anatomy of the entire body's vascular system. Classify the various sections of anatomical regions and their associated parts.

Course Pedagogy

The course pedagogy incudes a comprehensive study including the study of general structures and the specialized organs in a manner aimed at being student friendly. Various clinical aspects are discussed in relevance to the topic taught so as to relieve the monotony of the subject. Regular doubt clearing sessions, written assignments, quiz, chart and poster making and model making are some of the measures for learning. Periodic and surprise tests are taken to apprise and evaluate the students. They are taught on simulators for a live feeling. The practical includes the study of structures through mannequins which helps in holding the interest of the students.

Course contents

MODULE 1 Introduction to Sectional Anatomy & Terminology- Sectional planes, Anatomical relationships/terminology.

T.S. MISHRA UNIVERSITY, AMAUSI LUCKNOW

MODULE 2 Anatomy of the upper thorax- Surface anatomy relationships, Bony structures and muscles, Blood vessels. Divisions of the mid-thorax, heart and great vessels- Lungs, heart and great vessels, Esophagus

MODULE 3 CT/MRI Images of the Thorax - Normal and pathologic. Anatomy of the Abdomen-Major organs and their accessories, Abdominal blood vessels CT/MR Images of Abdomen - Normal and pathologic

MODULE 4 Anatomy of the Pelvis- Bony structures and associated muscles, Digestive and urinary systems. Reproductive Organs CT/MR Images of the Male/Female Pelvis- Normal and pathologic. Neuro Anatomy- Scan planes. Brain - Cerebral hemispheres, Sinuses, Ventricles, Brainstem and associated parts, Arterial/venous systems, Basal ganglia, Cranial nerves Spine- Vertebra and disc, Spinal cord and meninges Neck- Arterial/venous systems, Muscles, Glands and pharynx

Text Books:

- · PR Ashalatha & G Deepa 's Textbook of ANATOMY & PHYSIOLOGY
- B.D.Chaurasia's HUMAN ANATOMY Reference books:
- Sampath Madhyastha's Manipal manual of anatomy for allied health sciences
- · Krishna Garg & Madhu Joshi's Practical anatomy workbook
- · Dixit's Atlas of Histology for Medical Students
- · Basic Histology: A Color Atlas & Text
- Jana's Exam Oriented Practical Anatomy
- · Krishan's Anat
- · omy Mnemonics

Surial

(P)

Pankar

Weshka

J. W. L. Now

	Core	Credits- 06	Course Code: BMRIT	Semester: V
	ical Hours: 60	No. Of Practi	No. Of Sessions Lecture/ Tutorial : 30	

Course Objectives-

This course is designed to provide the students the basic knowledge in magnetic resonance imaging investigations with using contrast media and imaging instrumentation, pulse sequences, bio effects and safety in advance CT, MRI and USG.

Course learning outcomes-

CLO I-Enumerate the principle and hardware of the equipment.

Explain the dose of contrast media and conduct all procedure of CT.

CLO 2-Demonstrate how to take good quality of image

Perform the scan & should know the principle of protocol

CLO 3-Demonstrate the patient care in MRI

Enumerate technical aspects, protocol and planning techniques for all scans

CLO 4-Enumerate all types of artefacts and its correction

CLO 5 Able to know all procedure and patient care in USG

Course Pedagogy

The course will use the mixed technique of interactive lectures, regular assignments and practicing numerical. Teaching in this course is aimed to engage the students in strengthening their conceptual foundation and applying the knowledge gained to different day-to-day real world applications. It will not only help students to understand the fundamentals of physics of mammography and CT scan/ultrasound/ PACS but also improve skills and techniques for tackling practical problems with patient handling in MRI scans also.

Course contents

MODULE 1 Basic Computed Tomography- Basic principles of CT, generations of CT, CT instrumentation, image formation in CT, CT image reconstruction, Hounsfield unit, CT image quality, CT image display Advanced Computed Tomography Helical CT scan: Slip ring technology, advantages, multi detector array helical CT, cone — beam geometry, reconstruction of helical CT images, CT artifact, CT angiography, CT fluoroscopy, I-IRCT, post processing techniques: MPR, MIP, Min P, 3D

June 1

T.S. MISHRA UNIVERSITY, AMAUSI LUCKNOW

rendering: SSI) and VR, CT Dose, patient preparation, Imaging techniques and protocols for various parts of body, CT contrast enhanced protocols — CT angiography — (Aortogram, selective angiogram head, neck and peripheral) image documentation and Filing, maintenance of equipment and accessories.

MODULE 2 Advanced technique & instrumentation of MRI a. Basic Principles: Spin _precession — relaxation time — pulse cycle — TI weighted image — T2 weighted image — proton density image. b. Pulse sequence: Spin echo pulse sequence — turbo spin echo pulse sequence Gradient echo sequence — Turbo gradient echo pulse sequence - Inversion recovery sequence — STIR sequence — SPR sequence — FLAIR Sequence — Echo planar imaging — Advanced pulse sequences.

MODULE 3 MR Instrumentation: Types of magnets — RF transmitter — RF receiver — Gradient coils — shim coils — RF shielding — computers. d. Image formation: 2D Fourier transformation method — K-space representation — 3D Fourier imaging — MP. e. MR contrast media — MR angiography — TOF & PCA — MR Spectroscopy — filnctional MRI

MODULE 4 Ultrasonography a. Basic Acoustics, Ultrasound terminologies: acoustic pressure, power, intensity, impedance, speed, frequency, dB notation: relative acoustic pressure and relative acoustic intensity. b. Interaction of US with matter: reflection, transmission, scattering, refraction and absorption, attenuation and attenuation coefficients, US machine controls, US focusing. c. Production of ultrasound: Piezoelectricity, Medical ultrasound transducer: Principle, construction and working, characteristics of US beam. d. Ultrasound display modes: A, B, M e. Real-time ultrasound: Line density and frame rate, Real-time ultrasound transducers: mechanical and electronic arrays, ultrasound artifacts, ultrasound recording devices, and Distance, area & volume measurements. f. Techniques for imaging different anatomic areas, ultrasound artifacts, biological effects and safety. g. Doppler Ultrasound- Patient preparation for Doppler, Doppler artifacts, vascular sonography,

PRACTICAL:

- 1) Physics, scanning principle and image formation in USG, CT and MRI
- Identification of different parts of MR scanner
- 3) Applications of various procedures in well-equipped Hospitals and Diagnostic Centers.

Books Recommended-

Clark's Radiography- Clark / Text book of radiology for residents and technicians- S K Bhargava Radiographic positioning- Garkal

Radiology- Special investigation - Champman.

www.wikipedia.co.in // www.radiopedia.co.in

(P)

Panker

Mishka

S. W. M.

T.S. MISHRA UNIVERSITY, AMAUSI LUCKNOW

Semester: V	nester: V Course Code: BMRIT 503		Core	
No. Of Sessions Lecture/ Tutorial : 30		No. Of Practical Hours: 60		
Course Pre-Requ	isites:	Numbers Of Session: 90		

Course Objectives-

This course is designed to provide the students the basic knowledge in Computed Tomography imaging and Magnetic resonance imaging investigations with using contrast media and imaging instrumentation Generation of Quality assurance and control.

Course learning outcomes-

CLO-1 Able to know scanning of MSK, Vascular and cardiopulmonary system.

Enumerate- distinguish all types of bones, joints and connective tissue

CLO 2-Explainthe history and generations CT/MRI

Perform the scan and Demonstrate all technical aspects and protocols

CLO 3-Explain different types of Artefacts and correction. Demonstrate the QA and QC doing himself and take care of QA & QC papers CLO 4 Able to know USG and Doppler techniques

Course Pedagogy

The course will use the mixed technique of interactive lectures, regular assignments and practicing numerical. Teaching in this course is aimed to engage the students in strengthening their conceptual foundation and applying the knowledge gained to different day-to-day real world applications. It will not only help students to understand the fundamentals of physics of mammography and CT scan/ultrasound/ PACS but also improve skills and techniques for tackling practical problems with patient handling in MRI scans also.

Course contents

MODULE 1 Ultrasonography/ Doppler studies: Techniques of sonography-selectionPreparations - instructions and positioning of patient for TAS, TVS, TRUS, neck USG and extremities- patient care and maintenance protocols clinical applications display methods — quality image reproducible extend — biopsy procedures, assurance to patients.

MODULE 2 CT scan studies acquisition/ protocols /techniques: CT of head and neck — thorax — abdomen — pelvis — musculo skeletal system — spine — PNS. Anatomy — clinical Indications and contraindications — patient preparation — technique — contrast media-types, dose, injection technique; timing, sequence - image display — patient care — utilization of available techniques & image processing facilities to guide the clinician- CT anatomy and pathology of different organ systems.

MODULE 3 MRI Scanners: Methods of MRJ imaging methods - Head and Neck ,Thorax, Abdorfier

T.S. MISHRA UNIVERSITY, AMAUSI LUCKNOW

Musculoskeletal System imaging - Clinical indications and contraindications types of common sequences effects of sequence on imaging - Protocols for various studies slice section- patient preparation-positioning of the patient -patient care-calibration paramagnetic agents and dose, additional techniques and recent advances in MRI - image acquisition-modification of procedures in an unconscious or un co-operative patient - Plam studies- contrast studies -special procedures-reconstructions- 3D images- MRS blood flow imaging, diffusion/perfusion scans - strength and limitations of MRI.

PRACTICAL

- 1) Physics, scanning principle and image formation in CT/MRI/USG
- 2) Identification of different parts of CT /MRI USG scanner
- 3) Applications of various procedures in well-equipped Hospitals and Diagnostic Centers
- 4) Quality control of CT /MRI

Books Recommended-

Clark's Radiography- Clark / Text book of radiology for residents and technicians- S K Bhargava Radiographic positioning- Garkal

Radiology- Special investigation - Champman.

www.wikipedia.co.in // www.radiopedia.co.in

MRI made easy CT made easy

Lines

m

Romka

Wishka

J.why ?

Course Title:- Res	earch Methodology & Biostati	stics-I	
Semester; V	Course Code: BMRIT		Core
No. Of Sessions L	ecture/ Tutorial : 30	No. Of Practi	ical Hours: No practical
Course Pre-Requi	sites:	Numbers Of	Session: 30

Course Introduction

As the Indian government aims for Universal Health Coverage, the lack of skilled human resource may prove to be the biggest impediment in its path to achieve targeted goals. The benefits of having Al-IPs in the healthcare system are still unexplored in India. Although an enormous amount of evidence suggests that the benefits of Al-IPs range from improving access to healthcare services to significant reduction in the cost of care, though the Indian healthcare system still revolves around the doctor-centric approach. The privatization of healthcare has also led to an ever-increasing out-of-pocket expenditure by the population. However, many examples assert the need of skilled allied and healthcare professionals in the system, such as in the case of stroke survivors, it is the support of AHPs that significantly enhance their rehabilitation and long term treatment ensures return to normal life. The basic knowledge of research methodology will help them in their chosen profession and will be of immense use in the same.

Course Objectives:

This course is designed to provide the students the basic knowledge in research process and Bio-statistics. At the conclusion of the course, the students will have the knowledge of data collection, statistical application and finally, presentation of the statistical data. The first part shall be conducted in second semester and second part shall be covered in third semester

Course Learning Outcomes:

Upon successful completion of the course, the students should be able to (knowledge based):

Upon successful completion of the course, the students should be able to:

CLOI: Understand the needs of research in clinical field of Radiology.

CL02: Understand the difference between the various types of research methodologies.

CL03: Understand the various types of data collecting methods.

CL04: Understand and learn about the knowledge of research to be used in clinical areas.

Course Pedagogy

The course will use the mixed technique of Interactive lectures, regular assignments and practicing numerical. Teaching in this course is aimed to engage the students in strengthening their conceptual foundation and applying the knowledge gained to different day-to-day real world applications. It will not only help students to understand the fundamentals of applied physics but also improve skills and

S. MISHRA UNIVERSITY, AMAUSI LUCKNOW

techniques for tackling practical problems.

Course contents and duration: The classes will be two theories and two practical including the tutorials in a week Course contents

Module 1: Need for Research in the field of cardiology. Introduction to research methods, conducting a literature review, Research design, Sampling methods, Data collection and data collection tools, Data analysis: Quantitative and Qualitatively, Public health research, Issues in Research of research problems and writing research questions, Hypothesis, Null and Research Hypothesis, Type I and Type II errors in hypothesis testing

Module 2: Introduction of epidemiology, Descriptive epidemiology, Experimental and no experimental research designs, Screening, Sampling methods, Biological variability, normal distribution

Module 3: Bias and Confounding, Association and causation, Odds ratio and relative risk, sensitivity and specificity Data collection methods- Observation method, Interview method, Questionnaires and schedules Construction,

Course References

- 1. Research Methodology: Kothari
- Methods in Biostatistics by B.K Mahajan
- 3. Probability and Statistics by Murray
- 4. Research Methodology by S M Israni

T.S. MISHRA UNIVERSITY, AMAUSI LUCKNOW

janka*

Semester: V	gulatory requirements in diagnost Course Code: BMRIT 505		Core
No. Of Sessions I.	ecture/ Tutorial : 30	No. Of Practic	cal Hours: No practical
Course Pre-Requisi	les:	Numbers Of Se	ession: 30

Course Objectives-

AERB safety code and ethics

Patient Protection-Safe work practice in diagnostic radiology Radiation emergencies- situation handling.

Course learning outcomes-

CLO I-Enumerate how to work as per the AERB safety guideline in clinical setup.

CLO 2-Demonstrateradiation protection and patient care

CLO 3-Enumerate radiation emergencies &radiation protection and patient care

Course contents

MODULE I- Regulatory Bodies & regulatory Requirements: International Commission on Radiation Protection (ICRP) / National Regularity body (AERB - Atomic Energy Regulatory Board) - Responsibilities, organization, Safety Standard, Codes and Guides, Responsibilities of licenses, registrants & employers and Enforcement of Regulatory requirements.

MODULE 2- Role of Radiographer in Planning, QA & Radiation Protection: Role of technologist in radiology department - Personnel and area monitoring., Setting up of a new XRay unit, staffrequirement, AERB specifications for site planning and mandatory guidelines — Planning of X-ray rooms, dark rooms — Inspection of X-Ray installations - Registration of XRay equipment installation- Certification

MODULE 3- Evaluation of workload versus radiation factors — Occupational exposure and protection Tools/devices. ICRP, NRPB, NCR-P and WHO guidelines for radiation protection, pregnancy and radiation protection. NABH guidelines, AERB guidelines, PNDT Act and guidelines

Books Recommended- Text book of radiology for residents and technicians- s k Bhargava www.wikipedia.co.in // www.radiopedia.co.in

Guide lines of AERB

Lune 2 6

<u>_</u>

Rankar

Nishka

J. wester?

Sixth Semester (31-36 months)

bject Code	Course Titles	Hours Per week			Marks			CR
Sey/e		L	т	P	Internal	External	Total	
MRIT -601	Quality assurance & radiation safety	3	1		40	60	100	4
MRIT -602	Hospital practice & care of patients	3	1		40	60	100	4
MRIT-603	Research Methodology & Biostatistics- II	3	1	•	40	60	100	4
MRIT -604	Quality assurance & radiation safety	3	1	-	40	60	100	4
MRIT -605	Hospital practice & care of patients	-		4	40	60	100	2
MRIT-606	Project Work	3	-	4	40	60	100	2
	Total	12	4	8	240	360	600	26
	Total Hours in Semester		550					

TE:

breviations: L - Lecture, T - Tutorials and P - Practical

isidering four months per semester as working months, total contact hours per semester shall be 550 ve hundred and Fifty)

Lunel on

Panka Michka

Z.War. r.J

ourse Title: - Qua	ality assurance & radiation safet	у		
emester: VI	Course Code: BMRIT 601		Core	
o. Of Sessions Lo	ecture/ Tutorial : 30	No. Of Pract	ical Hours; 60	
ourse Pre-Requis	ites:	Numbers Of	Session: 90	

ourse Objectives-

ERB safety code and ethics

itient Protection-Safe work practice in diagnostic radiology Radiation nergencies- situation handling

ourse learning outcomes-

CLO I-Enumerate how to work as per the AERB safety guideline in clinical setup.

LO 2-Demonstrateradiation protection and patient care

LO 3-Enumerate radiation emergencies &radiation protection and patient care

ourse contents

4ODULE 1 Quality Assurance and quality control of Modern Radiological and Imaging Equipment which acludes Digital Radiography, Computed Radiography, CT scan, MRI Scan, Ultrasonography and PACS elated.

AODULE 2 Image artifacts their different types, causes and remedies, Newer Radiation safety protocols nd recent advances in radiation safety including AERB guidelines

MODULE-3 National & international agencies, AERB, BARC, ICRP, WHO, IAEA and their role.

MODULE- 4 AERB safety code and ethics: Built in safety specifications for diagnostic x-ray, fluoroscopy and CT units, Specifications for radiation protection devices-room layout. Operational Safety-Radiation protection programme - Personnel requirements and responsibilities-regulatory controls.

MODULE-5 Radiation emergencies- situation handling, safety and prevention-legal requirements recent developments in radiation safety related topics.

Books Recommended-

Text book of radiology for residents and technicians- s k Bhargava www.wikipedia.co.in // www.radiopedia.co.in

Guide lines of AFRR

T.S. MISHRA UNIVERSITY, AMAUSI LUCKNOW

Course Title: - Ho	spital Practice and Patient care		
Semester: VI	Course Code: BMRIT 602	Credits- 06	Core
No. Of Sessions L	ecture/ Tutorial : 30	No. Of Practical Hou	rs: 60
Course Pre-Requi	sites:	Numbers Of Session:	90

Course Objectives-

This course is designed to provide the students the basic knowledge in Radiography. At the end of the course, the student should be able to-

Course learning Outcomes-

- CLO I introduction to hospital staffing, Medical records and documentation
- CLO 2 Understood the Legal issues, Professional ethics.
- CLO 3 Must know Departmental Safety and Infection control
- CLO 4 Body mechanics and transferring of patient

Course Pedagogy

The course pedagogy incudes a comprehensive study including the study of general structures and the specialized organs in a manner aimed at being student friendly. Various clinical aspects are discussed in relevance to the topic taught so as to relieve the monotony of the subject. Regular doubt clearing sessions, written assignments, quiz, chart and poster making and model making are some of the measures for learning. Periodic and surprise tests are taken to apprise and evaluate the students. They are taught on simulators for a live feeling. The practical includes the study of structures through mannequins which helps in holding the interest of the students.

MODULE I Hospital staffing and administration, records, professional, ethics, co-operation with other staff and departments, Departmental organisations. Handling of the patients, seriously ill and traumatized patients, visually impaired, speech and hearing impaired, mentally impaired, drug addicts and non-English speaking patients. Understanding patient needs - patient dignity of inpatient and out patients. Interaction with the patient's relatives and visitors.

MODULE 2 Methods of effective communication verbal skills, body language, professional appearance, visual contact etc. Elementary personal and departmental hygiene, dealing with receptacles, bed pans and urinaletc. General preliminaries to the exam.

MODULE 3 Moving chair and stretcher, patient. Unconscious patient, general comfort and reassurance for the patient. Vital signs and oxygen - patient's Haemeatasis status. Body temp, respiratory rate, pulse, blood pressure, oxygen therapy, oxygen devices, Chest tubes and lines.

T.S. MISHRA UNIVERSITY, AMAUSI LUCKNOW

IODULE 4 First aid - shock, electrical shock, haemorrhage, burns, Asphyxia, fractures, loss of insciousness. Emergency treatment to the collapsed patient. Artificial respiration and resuscitation, reparation of patient for general and special radiological examinations. Supervision of patients adergoing special examination. Administration of drugs and contrast media. Asceptic and sterile occedures. Handling of infections patients in the department or in the ward. Regulation of dangerous rugs. Trolley set up for special x-ray examinations, Radiation hazardous and protective measures.

RACTICAL

fedical records and documentation egal issues in radiology department, PNDT Act

rofessional ethics and Code of conduct of radiographer

landling of patients: Seriously ill and traumatized patients, visually impaired, hearing and speech mpaired patients, mentally impaired patients, infectious patients
Departmental Safety

nfection control: skin care, donning of gowns, gloves, face masks, head caps, shoe covers.

litals sign, Body mechanics and transferring of patient, draw sheet lift, use of slide boards,

wheelchair to couch, couch to wheelchair, couch to table, three men lift and four men lift.

First aid: artificial respiration, haemostasis

Local anesthesia and general anesthesia

Facilities regarding general Anesthesia in the X-ray department

Management of adverse reactions to contrast media

Course References:

- 1) PR Ashalatha& G Deepa'sTextb00k of ANATOMY & PHYSIOLOGY
- 2) N Geetha 'sTextbook of physiology

Reference Books:

- 1) C C Chatterjee's Human Physiology
- 2) C C Chatterjee's Practical Physiology for Paramedical Courses
- CN Chandrashekhar's Manipal Manual of Medical Physiology
 RK Maurya's Medical Physiology

Online references:

Coursera subscription for online anatomy topics

Luncil

Ponka

Michba

J. Whooler J

Course Title: - Res	search Methodology & Biostatistic	cs-II		
Semester: VI	Course Code: BMRIT 603		Core	
No. Of Sessions L	ecture/ Tutorial : 40	No. Of Practic	cal Hours: 60	
Course Pre-Requis	sites:	Numbers Of S	Session: 90	

Course Introduction

as the Indian government aims for Universal Health Coverage, the lack of skilled human resource may rove to be the biggest impediment in its path to achieve targeted goals. The benefits of having AHPs in he healthcare system are still unexplored in India. Although an enormous amount of evidence suggests hat the benefits of AHPs range from improving access to healthcare services to significant reduction in he cost of care, though the Indian healthcare system still revolves around the doctor-centric approach. The privatization of healthcare has also led to an ever-increasing out-of-pocket expenditure by the population. However, many examples assert the need of skilled allied and healthcare professionals in the system, such as in the case of stroke survivors, it is the support of AHPs that significantly enhance their rehabilitation and long term treatment ensures return to normal life. The basic knowledge of research methodology will help them in their chosen profession and will be of immense use in the same.

Course Objectives:

This course is designed to provide the students the basic knowledge in research process and Biostatistics. At the conclusion of the course, the students will have the knowledge of data collection, statistical application and finally, presentation of the statistical data. The first part shall be conducted in second semester and second part shall be covered in third semester

Course Learning Outcomes

Upon successful completion of the course, the students should be able to (knowledge based):

CLOI: Understand the various research methodology (Remember & Understand)

CL02: Compare the differences between the central tendency and measures of dispersion.

CL03: Learn to apply the knowledge of various types of research to clinical aspect of diseases (Apply &Analyze)

CL04: Augment their learning by making abstracts, charts, diagrams, graphs and learning on visiting hospitals for practical skills in research methods (Synthesize, evaluate & create)

Course Pedagogy

The course will use the mixed technique of interactive lectures, regular assignments and practicing numerical. Teaching in this course is aimed to engage the students in strengthening their conceptual foundation and applying the knowledge gained to different day-to-day real world applications. It will not

T.S. MISHRA UNIVERSITY, AMAUSI LUCKNOW

only help students to understand the fundamentals of applied physics but also improve skills and techniques for tackling practical.

Course contents and duration: The classes will be two theories and two practical including the tutorials in a week.

Course contents

Module 1: Critical analysis of research papers, conducting a literature review, Writing Research proposals, Development of conceptual framework in research

Module 2: Introduction to Biostatistics

Introduction to Statistics, Classification of data, Source of data, Method of scaling - nominal, ordinal, ratio and interval scale, measuring reliability and validity of scales, Measures of Central tendency, Measures of Dispersion. Skewness and kurtosis, Sampling, Sample size determination, Introduction and method of collecting and presenting of statistical data.

Calculation and interpretation of various measures like mean, median, standard deviations, Skewness and Kurtosis, Probability distribution, Correlation and regression Significance tests and confidence intervals

Course References

- 1. Research Methodology: Kothari
- 2. Methods in Biostatistics by B.K Mahajan
- 3. Probability and Statistics by Murray
- 4. Research Methodology by S M Israni

Lines

m Panka]

Mushka

J. ribrah 17

Course Title: - Pr	oject		
Semester; VI	Course Code: BMRIT 603		Core
No. Of Sessions	Lecture/ Tutorial : 00	No. Of Pract	ical Hours: 60
Course Pre-Requisites:		Numbers Of	Session: 60

Project Report

Students have to carry out a research project (on any topic related to radiology) under the supervision of a faculty. The project report has to be prepared on the basis of the research work carried out. The assessment is done on the basis of the work done and the presentation and viva.

quil

m Ranka J

C why wy